Citation: WEI Ling, ZENG Chun-yang, XIE Hong-juan, WU Ying-quan. Study on the formation of 2-pentanone from ethanol over K-CuZrO2 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 80-87. doi: 10.1016/S1872-5813(21)60008-7 shu

Study on the formation of 2-pentanone from ethanol over K-CuZrO2 catalysts

  • Corresponding author: WU Ying-quan, wuyq@sxicc.ac.cn
  • Received Date: 2 September 2020
    Revised Date: 30 September 2020

    Fund Project: The project was supported by Science and Technology Innovation Project of Shanxi Colleges and Universities (2009L1007)

Figures(8)

  • A series of K-CuZrO2 catalysts with different Cu contents were prepared. The catalytic performance and reaction mechanism of 2-pentanone from ethanol condensation were investigated. The structure and properties of the catalysts were studied by N2 sorption, XRD, H2-TPR, CO2-TPD, TEM and XPS. The results showed that when the content of Cu was 9%, the conversion of ethanol reached the maximum (99.5%) due to the strong interaction between CuO and ZrO2 which promoted the reduction of CuO and resulted in the largest specific surface area of Cu on the catalyst surface. The selectivity of 2-pentanone reached the maximum (35.0%) because the strongest basicity related to medium-strength basic sites of the catalyst surface were suitable for the condensation reaction. The formation of 2-pentanone on K-CuZrO2 catalyst was speculated on the basis of the analysis of intermediates: ethanol was dehydrogenated to form acetaldehyde. Then, the acetaldehyde was condensed and decomposed to acetone followed by reaction with acetaldehyde to form 2-pentanone.
  • 加载中
    1. [1]

      CHEN Ming-ming, LIU Wei, CHEN Meng-ci, ZHEN Xue-yun, CHEN Ming. Synthesis of 3,5-dichloro-2-pentanone[J]. Fine Chem Intermed,2015,45(1):36−39.

    2. [2]

      REN Ya-ning, ZhANG Yi, MEN Jing. Synthesis method of 3,5-dichloro-2-pentanone and its application in preparation of drugs[J]. Chem Pharm Eng,2019,40(2):23−30.

    3. [3]

      SUN Yong-jun, LI Shuo, GUO Chun. Improvement on the synthesis of 5-chlorine-2-pentanone[J]. Fine Chem Intermed,2015,45(6):45−47.

    4. [4]

      Deng Guang-jin. Study on the synthesis of aliphatic ketones[D]. Beijing: Beijing Univ Chem Technol, 2001.

    5. [5]

      WANG Q N, WENG X F, ZHOU B C, LV S P, MIAO S, ZHANG D L, HAN Y, SCOTT S L, SCHÜTH F, LU A H. Direct, selective production of aromatic alcohols from ethanol using a tailored bifunctional cobalt-hydroxyapatite catalyst[J]. ACS Catal,2019,9:7204−7216.  doi: 10.1021/acscatal.9b02566

    6. [6]

      WANG Q N, ZHOU B C, WENG X F, LV S P, SCHÜTH F, LU A H. Hydroxyapatite nanowires rich in [Ca-O-P] sites for ethanol direct coupling showing high C6–12 alcohol yield[J]. Chem Commun,2019,55:10420−10423.  doi: 10.1039/C9CC05454E

    7. [7]

      HE D P, DING Y J, CHEN W M, LU Y, LUO H Y. One-step synthesis of 2-pentanone from ethanol over K-Pd/MnOx-ZrO2-ZnO catalyst[J]. J Mol Catal A: Chem,2005,226:89−92.  doi: 10.1016/j.molcata.2004.08.002

    8. [8]

      SUBRAMANIAM S, GUO M F, BATHENA T, GRAY M, ZHANG X, MARTINEZ A, KOVARIK L, GOULAS K A, RAMASAMY K K. Direct catalytic conversion of ethanol to C5+ ketones: Role of PdZn alloy on catalytic activity and stability[J]. Angew Chem Int Ed,2020,59:14550−14557.  doi: 10.1002/anie.202005256

    9. [9]

      LU T, DU Z, LIU J, CHEN C, XU J. Dehydrogenation of primary aliphatic alcohols to aldehydes over Cu-Ni bimetallic catalysts[J]. Chin J Catal,2014,35:1911−1916.  doi: 10.1016/S1872-2067(14)60208-4

    10. [10]

      YAN Meng-xiao, XIAO Yong-shan, SHI Xian-ying, GE Han-qing, LI Ting, SONG Yong-hong, LIU Zhao-tie, LIU Zhong-wen. The gas-phase dehydrogenation of cyclohexanol to cyclohexanone over Cu-SiO2 catalysts[J]. J Shaanxi Normal Univ (Nat Sci Ed),2019,47(1):109−116.

    11. [11]

      LIN Dan-dan, NING Yan-chun, WU Xu, GUO Juan-juan, AN Xia, XIE Xian-mei. Effect of Cu content on the catalytic properties of CuZnAl for gas-phase dehydrogenation of cyclohexanol[J]. J Taiyuan Univ Technol,2017,48(1):25−29.

    12. [12]

      JIANG Guang-shen, HU Yun-feng, CAI Jun, XU Peng, CONG Liang, FANG Fei. Research of Cu-ZnO catalysts for sec-butanol dehydrogenation to methyl ethyl ketone[J]. Chem Ind Eng Progress,2013,32(2):352−358.

    13. [13]

      LV Ting-ting. Synthesis of hydroxybutyl vinyl ether catalyzed by solid base catalyst K/ZrO2[D]. Taiyuan: Shanxi University, 2018.

    14. [14]

      HE Dai-ping, DING Yun-jie, YIN Hong-mei, WANG Tao, ZHU He-jun. Effect of alkali promoters on catalytic performance of MnOx/ZrO2 for synthesis of methanol and isobutanol from syngas[J]. Chin J Catal,2003,24(2):111−114.  doi: 10.3321/j.issn:0253-9837.2003.02.009

    15. [15]

      TAN L, YANG G H, YONEYAMA Y, KOU Y L, TAN Y S, VITIDSANTC T, TSUBAKIA N. Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts[J]. Appl Catal A: Gen,2015,505:141−149.  doi: 10.1016/j.apcata.2015.08.002

    16. [16]

      TIAN S P, WANG S C, WU Y Q, GAO J W, WANG P, XIE H J, YANG G H, HAN Y Z, TAN Y S. The role of potassium promoter in isobutanol synthesis over Zn-Cr based catalysts[J]. Catal Sci Technol,2016,6:4105−4115.  doi: 10.1039/C5CY02030A

    17. [17]

      SATO A G, VOLANTI D P, MEIRA D M, DAMYANOVA S, LONGO E, BUENO J M C. Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion[J]. J Catal,2013,307:1−17.  doi: 10.1016/j.jcat.2013.06.022

    18. [18]

      TAN Li, WU Ying-quan, ZHANG Tao, XIE Hong-juan, CHEN Jian-gang. Effect of precipitation temperature on the performance of K-CuLaZrO2 catalyst for isobutanol synthesis from syngas[J]. J Fuel Chem Technol,2019,47(9):1096−1103.

    19. [19]

      WU Y Q, ZHANG J F, ZHANG T, SUN K, WANG L Y, XIE H J, TAN Y S. Effect of potassium on the regulation of C1 intermediates in isobutyl alcohol synthesis from syngas over CuLaZrO2 catalysts[J]. Ind Eng Chem Res,2019,58:9343−9351.  doi: 10.1021/acs.iecr.9b01436

    20. [20]

      HLEIS D, LABAKI M, LAVERSIN H, COURCOT D, ABOUKAIS A. Comparison of alkali-promoted ZrO2 catalysts towards carbon black oxidation[J]. Colloids Surf A,2008,33(2/3):193−200.

    21. [21]

      AGUILA G, VALENZUELA A, GUERRERO S, ARAYA P. WGS activity of a novel Cu-ZrO2 catalyst prepared by a reflux method. Comparison with a conventional impregnation method[J]. Catal Commun,2013,39:82−85.  doi: 10.1016/j.catcom.2013.05.007

    22. [22]

      WU Gui-sheng, REN Jie, SUN Yu-han. The effect of calcinations temperature on the performance of Cu/ZrO2 and Cu-La2O3/ZrO2[J]. Acta Phys -Chim Sin,1999,15(6):564−567.  doi: 10.3866/PKU.WHXB19990616

    23. [23]

      WU Ying-quan, XIE Hong-juan, KOU Yong-li, Tan Li, HAN Yi-zhuo, TAN Yi-sheng. Effect of calcination temperature on performance of K-Cu/Zn/La/ZrO2 for isobutanol synthesis[J]. J Fuel Chem Technol,2013,41(7):868−874.  doi: 10.1016/S1872-5813(13)60036-5

    24. [24]

      WU Ying-quan, WANG Si-chen, XIE Hong-juan, GAO Jun-wen, TIAN Shao-peng, HAN Yi-zhuo, TAN Yi-sheng. Influence of Cu on the K-LaZrO2 catalyst for isobutanol synthesis[J]. Acta Phys-Chim Sin,2015,31(1):166−172.  doi: 10.3866/PKU.WHXB201411241

    25. [25]

      ORDOMSKY V V, SUSHKEVICH V L, IVANOVA I I. Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica[J]. J Mol Catal A: Chem,2010,333:85−93.  doi: 10.1016/j.molcata.2010.10.001

    26. [26]

      PRAŠNIKAR A, PAVLIŠIČ A, RUIZ-ZEPEDA F, KOVAČ J, LIKOZAR B. Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol[J]. Ind Eng Chem Res,2019,58:13021−13029.  doi: 10.1021/acs.iecr.9b01898

  • 加载中
    1. [1]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    2. [2]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    11. [11]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    12. [12]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(5)
  • Abstract views(2104)
  • HTML views(432)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return