泡沫镍负载二维金属有机框架及其衍生物耦合阵列用于高活性双效氧电极

黄凯 郭帅 王茹玥 林森 纳韦德·侯赛因 魏呵呵 邓铂翰 龙圆正 雷鸣 唐浩林 伍晖

引用本文: 黄凯,  郭帅,  王茹玥,  林森,  纳韦德·侯赛因,  魏呵呵,  邓铂翰,  龙圆正,  雷鸣,  唐浩林,  伍晖. 泡沫镍负载二维金属有机框架及其衍生物耦合阵列用于高活性双效氧电极[J]. 催化学报, 2020, 41(11): 1754-1760. doi: 10.1016/S1872-2067(20)63613-0 shu
Citation:  Kai Huang,  Shuai Guo,  Ruyue Wang,  Sen Lin,  Naveed Hussain,  Hehe Wei,  Bohan Deng,  Yuanzheng Long,  Ming Lei,  Haolin Tang,  Hui Wu. Two-dimensional MOF/MOF derivative arrays on nickel foam as efficient bifunctional coupled oxygen electrodes[J]. Chinese Journal of Catalysis, 2020, 41(11): 1754-1760. doi: 10.1016/S1872-2067(20)63613-0 shu

泡沫镍负载二维金属有机框架及其衍生物耦合阵列用于高活性双效氧电极

  • 基金项目:

    国家自然科学基金(51902027,61874013,51976143,61874014,61674019,61974011);国家973计划基金(2015CB932500);中央高校基本科研业务费专项资金(2019RC20);信息光子学与光通信国家重点实验室(北京邮电大学)开放课题.

摘要: 氧电催化一般涉及到氧还原反应(ORR)和氧析出应(OER),是诸如燃料电池,金属空气电池和水电解池等能源转换与存储技术的关键步骤.其中,可充电的金属锌空气电池具有较高的能量密度,开发成本较低,运行安全且环境友好.然而,开发并采用高效,低成本且储量丰富的催化材料代替贵金属基电催化剂,仍旧是现阶段尚未完全解决的问题和挑战.最近,金属有机框架(MOFs)以及碳基的金属有机框架衍生物作为高效电催化剂,因其超乎寻常的形貌,结构,组分和功能性的可调节能力,已经逐渐引起了广泛的关注和研究兴趣.因此,本文报道了一种泡沫镍负载的二维金属有机框架及其衍生物耦合阵列作为无粘结剂型ORR/OER双效催化剂,能够实现高比表面积,高电导率和高双功能性,同时避免了使用有机粘结剂的复杂制备过程和不可避免的电池性能影响.与传统设计不同,本文主要通过集成各司其职的不同功能组分并充分暴露电化学活性面积来提高双效电极的整体活性.电化学测试结果表明,耦合阵列电极(R-NCM)相比于MOFs阵列(NCM)和MOFs衍生物阵列(A-NCM)等对比电极,具有显著提高的双效氧电极性能,氧还原反应的起峰电位约为0.90V,而氧析出反应电流密度达到100mA cm-2时的过电势为319mV.由于其在生长-热裂解-再生长过程中所具有的稳定的站立多级二维纳米片结构,所制备的双效氧电极材料表现出显著增强的双官能团性,电化学活性面积,反应动力学和稳定性,并可进一步用于可充电的金属锌空气电池(ZABs).考虑到制备过程的可行性与简洁性,所提出的生长-热裂解-再生长策略不仅能够用于耦合型分级纳米片阵列结构的合成,还能为设计开发相关能源电化学装置的高活性电极结构提供借鉴.

English

    1. [1] D. Ji, L. Fan, L. Li, S. Peng, D. Yu, J. Song, S. Ramakrishna, S. Guo, Adv. Mater., 2019, 31, 1808267.

    2. [2] J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Energy Environ. Sci., 2018, 11, 3075-3095.

    3. [3] D. Stock, S. Dongmo, J. Janek, D. Schröder, ACS Energy Lett., 2019, 4, 1287-1300.

    4. [4] D. U. Lee, J. Y. Choi, K. Feng, H. W. Park, Z. Chen, Adv. Energy Mater., 2014, 4, 1301389.

    5. [5] X. Liu, Y. Yuan, J. Liu, B. Liu, X. Chen, J. Ding, X. Han, Y. Deng, C. Zhong, W. Hu, Nat. Commun., 2019, 10, 4767.

    6. [6] S. Liu, Z. Wang, C. Yu, Z. Zhao, X. Fan, Z. Ling, J. Qiu, J. Mater. Chem. A, 2013, 1, 12033-12037.

    7. [7] T. V. Pham, H. P. Guo, W. B. Luo, S. L. Chou, J. Z. Wang, H. K. Liu, J. Mater. Chem. A, 2017, 5, 5283-5289.

    8. [8] W. B. Luo, X. W. Gao, D. Q. Shi, S. L. Chou, J. Z. Wang, H. K. Liu, Small, 2016, 12, 3031-3038.

    9. [9] Z. Khan, S. Park, S. M. Hwang, J. Yang, Y. Lee, H. K. Song, Y. Kim, H. Ko, NPG Asia Mater., 2016, 8, e294.

    10. [10] Q. Ren, H. Wang, X. F. Lu, Y. X. Tong, G. R. Li, Adv. Sci., 2018, 5, 1700515.

    11. [11] H. Wang, Q. L. Zhu, R. Zou, Q. Xu, Chem, 2017, 2, 52-80.

    12. [12] B. Zhu, D. Xia, R. Zou, Coord. Chem. Rev., 2018, 376, 430-448.

    13. [13] J. Liu, D. Zhu, C. Guo, A. Vasileff, S. Z. Qiao, Adv. Energy Mater., 2017, 7, 1700518.

    14. [14] K. Shen, X. Chen, J. Chen, Y. Li, ACS Catal., 2016, 6, 5887-5903.

    15. [15] H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science, 2013, 3411230444.

    16. [16] B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. D. Lou, X. Wang, Nat. Energy, 2016, 115006.

    17. [17] J. Duan, S. Chen, C. Zhao, Nat. Commun., 2017, 8, 15341.

    18. [18] W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang, Q. Liu, Nat. Energy, 2019, 4, 115-122.

    19. [19] K. Huang, L. Zhang, T. Xu, H. Wei, R. Zhang, X. Zhang, B. Ge, M. Lei, J. Y. Ma, L. M. Liu, H. Wu, Nat. Commun., 2019, 10, 606.

    20. [20] X. He, S. Z. Luan, L. Wang, R. Y. Wang, P. Du, Y. Y. Xu, H. J. Yang, Y. G. Wang, K. Huang, M. Lei, Mater. Lett., 2019, 244, 78-82.

    21. [21] K. Huang, J. Liu, L. Wang, G. Chang, R. Wang, M. Lei, Y. Wang, Y. He, Appl. Surf. Sci., 2019, 487, 1145-1151.

    22. [22] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature, 2009, 457, 706-710.

    23. [23] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Lett., 2008, 9, 30-35.

    24. [24] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J. M. Tour, Nature, 2010, 468, 549-552.

    25. [25] M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Nano Energy, 2018, 44, 181-190.

    26. [26] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed., 2015, 54, 9351-9355.

    27. [27] L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu, X. Yao, Nat. Commun., 2016, 7, 10667.

    28. [28] S. Zhao, Y. Wang, J. Dong, C. T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy, 2016, 1, 16184.

    29. [29] C. Bai, A. Li, X. Yao, H. Liu, Y. Li, Green Chem, 2016, 18, 1061-1069.

    30. [30] P. Tan, B. Chen, H. Xu, W. Cai, W. He, M. Ni, Appl. Catal. B, 2019, 241, 104-112.

    31. [31] J. Ou, Y. Zhang, L. Chen, Q. Zhao, Y. Meng, Y. Guo, D. Xiao, J. Mater. Chem. A, 2015, 3, 6534-6541.

    32. [32] G. Zhang, C. Li, J. Liu, L. Zhou, R. Liu, X. Han, H. Huang, H. Hu, Y. Liu, Z. Kang, J. Mater. Chem. A, 2014, 2, 8184-8189.

    33. [33] M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Adv. Mater., 2018, 30, 1705431.

    34. [34] K. Huang, R. Wang, H. Wu, H. Wang, X. He, H. Wei, S. Wang, R. Zhang, M. Lei, W. Guo, B. Ge, H. Wu, J. Mater. Chem. A, 2019, 7, 25779-25784.

    35. [35] X. Yan, L. Tian, M. He, X. Chen, Nano Lett., 2015, 15, 6015-6021.

    36. [36] H. Sun, Y. Lian, C. Yang, L. Xiong, P. Qi, Q. Mu, X. Zhao, J. Guo, Z. Deng, Y. Peng, Energy Environ. Sci., 2018,11, 2363-2371.

    37. [37] H. Qiao, Y. Yang, X. Dai, H. Zhao, J. Yong, L. Yu, X. Luan, M. Cui, X. Zhang, X. Huang, Electrochim. Acta, 2019, 318, 430-439.

    38. [38] V. K. Abdelkader-Fernández, D. M. Fernandes, S. S. Balula, L. Cunha-Silva, M. J. Pérez-Mendoza, F. J. López-Garzón, M. F. Pereira, C. Freire, ACS Appl. Energy Mater., 2019, 2, 1854-1867.

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  892
  • HTML全文浏览量:  204
文章相关
  • 收稿日期:  2020-02-23
  • 修回日期:  2020-03-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章