过氧化氢生产工艺进展

高国华 田雅楠 巩笑笑 潘智勇 杨克勇 宗保宁

引用本文: 高国华,  田雅楠,  巩笑笑,  潘智勇,  杨克勇,  宗保宁. 过氧化氢生产工艺进展[J]. 催化学报, 2020, 41(7): 1039-1047. doi: 10.1016/S1872-2067(20)63562-8 shu
Citation:  Guohua Gao,  Yanan Tian,  Xiaoxiao Gong,  Zhiyong Pan,  Keyong Yang,  Baoning Zong. Advances in the production technology of hydrogen peroxide[J]. Chinese Journal of Catalysis, 2020, 41(7): 1039-1047. doi: 10.1016/S1872-2067(20)63562-8 shu

过氧化氢生产工艺进展

  • 基金项目:

    国家重点研发计划(2016YFB0301600).

摘要: 生产过氧化氢通常有电解法、蒽醌法、异丙醇法以及氧阴极还原法等.目前全世界总产量的95%以及国内总产量的99%的过氧化氢都是采用蒽醌法生产的.在更先进的生产过氧化氢的技术出现之前,蒽醌法仍将是今后一段时期生产过氧化氢最普遍的一种方法.
蒽醌加氢工艺有固定床和浆态床两种,国内仍采用较为落后的固定床工艺,而国外基本都采用浆态床工艺.固定床存在床层温升大、易偏流、有局部热点等缺陷,易导致蒽醌过度加氢,降解物种类和数量增多,降低了催化剂稳定性,限制了加氢单元的氢效,生产装置难以大型化.而浆态床工艺具有传质传热好、温度和气液固三相分布均匀等优势,是过氧化氢生产技术的发展趋势.浆态床反应器对催化剂的选择性具有更高的要求.因此,浆态床加氢技术的研发核心是开发兼有耐磨性和高选择性的微球催化剂.中国石化自主开发了具有高活性、高选择性和良好稳定性的蒽醌加氢微球催化剂,并对其活性和选择性进行了寿命试验和中试评价.中试结束后结粒度分布基本保持不变;载体水热稳定性好,使用过程结构没有发生明显变化.证明该催化剂机械强度高、耐磨性能好,能够满足浆态床使用要求.在新生产工艺中采用自主开发的新型浆态床反应器,具有优异的传质、传热效率;催化剂粒径小,完全克服了固定床反应器在规模稍大时存在的偏流、沟流、触媒板结等缺点,氢化效率可长期稳定在11 g/L以上;副反应少,氢化降解物大幅度减少,极大地减轻后续降解物再生负担.
在实际工业生产中,蒽醌加氢选择性无法实现100%,因此工作液中难以避免生成降解物,通常采用白土再生手段,使其再转变为蒽醌.但再生剂更换频繁,大大增加了生产成本,同时损失被物理吸附上去的昂贵的蒽醌.因此,十分有必要对蒽醌加氢的降解物种类进行定性识别并研究其再生机理,并在此基础上开发兼有长寿命和高活性的蒽醌降解物再生催化剂.中国石化采用GC-MS对乙基蒽醌和戊基蒽醌多种降解物进行比较全面的定性和定量研究,通过分析蒽醌工作液组成准确推测工作液再生效果,便于及时调整双氧水生产工艺工艺流程和优化参数;并自主开发高性能的蒽醌加氢降解物再生催化剂,可替代现有效率低下的白土床,显著提高装置经济性.
为有效解决蒽醌法生产中氧化废气的排放问题,中国石化发明一种无尾气排放、无需溶剂回收、氧含量可控、可减少氧化残液量的蒽醌法生产过氧化氢的氧化方法,从源头上解决蒽醌法生产双氧水装置的最大环保问题,它的应用将使蒽醌法生产双氧水装置朝着绿色环保迈出一大步.
目前蒽醌法生产H2O2虽然具有技术成熟、单程产率高、安全性高等优点,依旧存在投资高、工艺流程复杂,以及大量使用有机溶剂带来的产品污染、环境污染问题.与其相比,H2和O2直接合成H2O2(以下称为DSHP)技术的原子经济性高,并且污染少、环境友好.但由于反应过程中H2和O2直接接触,DSHP工艺存在一定的安全隐患.在反应过程中需要充入大量惰性气体稀释并循环,导致DSHP工艺效率低,操作及控制难度大.该反应所使用的Pd基催化剂,既有利于H2O2的生成,也利于三个副反应的发生:H2O的生成、H2O2的后续加氢及分解,导致产品选择性和产率较低.加入酸和卤素等稳定剂虽然可以显著提高产率,但存在设备腐蚀、催化剂活性组分流失等问题,严重影响催化剂的使用寿命.中国石化目前已经开始布局研发DSHP技术,在提高H2/O2反应的本质安全性、研发H2O2精准合成的催化材料和提高H2O2产能等方面做了大量的研究.可以预见,通过理论研究、实验设计和工程开发相结合,在不远的未来能够实现DHSP技术的工业应用.
目前国内双氧水几乎全部采用蒽醌法生产.虽然蒽醌法工艺已很成熟,但在多个技术环节,特别是蒽醌加氢催化剂、工作液体系、加氢反应器和环保等方面,存在非常大改进提升的空间.这些问题是实现装置大型化必须解决的.中国石化在这几个方面都自主开发了创新技术,形成了国内全新的拥有自主知识产权的生产过氧化氢的成套技术.作为最直接、最环保、最经济的生产过氧化氢的方法,氢氧直接合成技术与化工反应过程耦合,是未来过氧化氢生产和应用的发展方向,中国石化也已经开始在此方面进行研究和布局.

English

    1. [1] P. C. Foller, R. T. Bombard, J. Appl. Electrochem., 1995, 25, 613-627.

    2. [2] G. C. Zhang, Hydrogen Peroxide Production Technology, 1st ed., Chemical Industry Press, Beijing, 2012, 84-85.

    3. [3] Y. Y. Guo, C. N. Dai, Z. G., B. H. Chen, X. C. Fang, Catal. Today, 2016, 276, 36-45.

    4. [4] H. B. Li, B. Zheng, Z. Y. Pan, B. N. Zong, M. H. Qiao, Front. Chem. Sci. Eng., 2018, 12, 124-131.

    5. [5] M. Yang, Dalian University of Technology, Dalian, 2010, 3-4.

    6. [6] C. Samanta, Appl. Catal. A, 2008, 350, 133-149.

    7. [7] J. W. Han, East China University of Science and Technology, Shanghai, 2001.

    8. [8] K. M. Makar, US Patent 4061598, 1977.

    9. [9] H. B. Copelin, US Patent 4240933, 1980.

    10. [10] K. Ogasawara, T. Kato, N. Okuda, T. Konishi, K. Kato, CN Patent 1165111A, 1980.

    11. [11] T. Yamaguchi, T. Ohashi, JP Patent 170485, 2001.

    12. [12] V. Mathieu, P. Pennetreau, N. Vanlautem, US Patent 6306359, 2001.

    13. [13] C. C. Hu, Chem. Propel. Polym. Mater., 2004, 2(3), 1-4.

    14. [14] A. Drelinkiewicz, A. Pukkinen, R. Kangas, R. Laitinen, Catal. Lett., 2004, 94, 157-170.

    15. [15] R. Kosydar, A. Drelinkiewicz, E. Lalik, J. Gurgul, Appl. Catal. A, 2011, 402, 121-131.

    16. [16] R. Wang, C. C. Lin, T. W. Chen, J. X. Lin, S. L. Mao, J. Fuzhou Univ.(Nat. Sci. Edt.), 2005, 33, 391-394.

    17. [17] X. K. Meng, X. B. Chen, X. H. Mu, X. X. Zhang, X. Wang, B. N. Zong, E. Z. Min, CN Patent 1261347 C, 2003.

    18. [18] X. K. Meng, CN Patent 1541766, 2004.

    19. [19] X. K. Meng, X. B. Chen, X. H. Mu, X. X. Zhang, X. Wang, B. N. Zong, CN Patent 1317253 C, 2004.

    20. [20] Z. Y. Pan, G. H. Gao, K. Y. Yang, B. N. Zong, Sin. Chin., 2015, 45, 541-546.

    21. [21] L. Cao, K. J. Yang, W. T. Shi, R. lv, Z. W. Wang, Chem. Eng.(China), 2017, 45(2), 74-78.

    22. [22] H. Yang, G. Z. Qing, G. C. Liu, X. Yu, Y. Xie, CN Patent 104085859A, 2014.

    23. [23] X. S. Wang, X. M. Xia, Z. X. Xu, X. Y. Chen, CN Patent 101798065, 2010.

    24. [24] M. Li, Y. F. Li, Fine Chem. Raw Mater. Intermediate, 2018, 10, 12-16.

    25. [25] Y. D. Li, W. B. Zhang, G. Y. Yu, Chem. Propel. Polym. Mater., 2003, 1(5), 48-49.

    26. [26] D. Q. Li, Z. T. Guo, J.T. Feng, Y. J. Feng, CN Patent 102728338, 2012.

    27. [27] Q. L. Chen, Inorg. Chem. Ind., 2002, 34, 15-18.

    28. [28] X. T. Li, H. J. Su, G. Y. Ren, S. D. Wang, Appl. Catal. A, 2016, 517, 168-175.

    29. [29] E. Santacesaria, M. Di Serio, R. Velotti, U. Leone, J. Mol. Catal., 1994, 94, 37-46.

    30. [30] F. Sandelin, P. Oinas, T. Salmi, P. Juhani, H. Haario, Ind. Eng. Chem. Res., 2006, 45, 986-992.

    31. [31] Y. Q. Zhang, G. H. Gao, K. Y. Yang, B. N. Zong, G. T. Xu, Chin. J. Chromatogr., 2019, 37, 432-437.

    32. [32] W. J. Wang, Z. Y. Pan, B. Zheng, G. Guo, K. Yang, X. Mu, B. Zong, CN Patent 106540685A, 2015.

    33. [33] W. J. Wang, Z. Y. Pan, B. Zheng, G. Guo, K. Yang, X. Mu, B. Zong, CN Patent 106542502A, 2015.

    34. [34] W. J. Wang, Z. Y. Pan, B. Zheng, G. Guo, K. Yang, X. Mu, B. Zong, Pet. Process. Petrochem., 2016, 47, 103-106.

    35. [35] J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed., 2006, 45, 6962-6984.

    36. [36] T. Berglin, N. H. Schoeoen, Ind. Eng. Chem. Process Des. Dev., 1981, 20, 615-621.

    37. [37] E. Santacesaria, R. Ferro, S. Ricci, S. Carra, Ind. Eng. Chem. Res., 2002, 26, 155-159.

    38. [38] E. Santacesaria, P. Wilkinson, P. Babini, S. Carra, Ind. Eng. Chem. Res., 1988, 27, 780-784.

    39. [39] X. Q. Wang, H. P. Zhang, T. L. Cheng, L. Wang, Chem. Propel. Polym. Mater., 2017, 15(2), 48-51.

    40. [40] J. Z. Lu, H. J. Zhou, Q. Xu, Petro. Sci. Bull., 2016, 1, 503-511.

    41. [41] P. Korl, B. Maurer, US Patent, 09982108, 2001.

    42. [42] H. Eickhoff, R. Schirrmacher, K. Margartz, H. M. Huber, R. Goedecke, CN Patent 1081649, 1994.

    43. [43] G. H. Gao, K. Y. Yang, H. B. Li, Z. Y. Pan, B. Zheng, B. N. Zong, CN Patent 201320492007, 2013.

    44. [44] Y. C. Guo, M. Zhang, Y. P. Zhao, J. H. Cui, Chem. Propel. Polym. Mater. 2017, 15(5), 79-81.

    45. [45] X. L. Liu, Inorg. Chem. Ind., 2009, 41(01), 41-43.

    46. [46] X. H. Du, W. B. Zhou, Chem. Production Technol., 2013, 20(5), 52-55.

    47. [47] H. J. Rledl, G. Pfleiderer, I. G. Farbenindustrie AG, 1939.

    48. [48] L. J. Thenard, Ann. Chim. Phys., 1818, 8, 306-312.

    49. [49] R. Arrigo, M. E. Schuster, S. Abate, G. Giorgianni, G. Centi, S. Perathoner, S. Wrabetz, V. Pfeifer, M. Antonietti, R. Schlögl, ACS Catal., 2016, 6, 6959-6966.

    50. [50] B. Z. Hu, W. P. Deng, R. S. Li, Q. H. Zhang, Y. Wang, F. Delplanque-Janssens, D. Paul, F. Desmedt, P. Miquel, J. Catal., 2014, 319, 15-26.

    51. [51] M. Seo, D. W. Lee, S. S. Han, K. Y. Lee, ACS Catal., 2017, 7, 3039-3048.

    52. [52] H. Henkel, W. Weber, US1108752 A, 1914.

    53. [53] D. P. Dissanayake, J. H. Lunsford, J. Catal., 2002, 206, 173-176.

    54. [54] J. W. Lee, J. K. Kim, T. H. Kang, E. J. Lee, I. K. Song, Catal. Today, 2017, 293-294, 49-55.

    55. [55] Y. Han, J. H. Lunsford, J. Catal., 2005, 230, 313-316.

    56. [56] R. Todorovic, R. J. Meyer, Catal. Today, 2011, 160, 242-248.

    57. [57] D. P. Dissanayake, J. H. Lunsford, J. Catal., 2003, 214, 113-120.

    58. [58] S. Chinta, J. H. Lunsford, J. Catal., 2004, 225, 249-255.

    59. [59] A. Staykov, T. Kamachi, T. Ishihara, K. Yoshizawa, J. Phys. Chem. C, 2008, 112, 19501-19505.

    60. [60] J. K. Edwards, G. J. Hutchings, Angew. Chem. Int. Ed., 2008, 47, 9192-9198.

    61. [61] J. K. Edwards, E. N. Ntainjua, A. F. Carley, A. A. Herzing, C. J. Kiely, G. J. Hutchings, Angew. Chem. Int. Ed., 2009, 48, 8512-8515.

    62. [62] V. Paunovic, V. Ordomsky, M. F. N. D'Angelo, J. C. Schouten, T. A. Nijhuis, J. Catal., 2014, 309, 325-332.

    63. [63] J. K. Edwards, J. Pritchard, L. Lu, M. Piccinini, G. Shaw, A. F. Carley, D. J. Morgan, C. J. Kiely, G. J. Hutchings, Angew. Chem. Int. Ed., 2014, 53, 2381-2384.

    64. [64] Q. S. Liu, J. C. Bauer, R. E. Schaak, J. H. Lunsford, Appl. Catal. A, 2008, 339, 130-136.

    65. [65] J. Xu, L. Ouyang, G. J. Da, Q. Q. Song, X. J. Yang, Y. F. Han, J. Catal., 2012, 285, 74-82.

    66. [66] S. J. Freakley, Q. He, J. H. Harrhy, L. Lu, D. A. Crole, D. J. Morgan, E. N. Ntainjua, J. K. Edwards, A. F. Carley, A. Y. Borisevich, C. J. Kiely, G. J. Hutchings, Science, 2016, 351, 965-968.

    67. [67] E. N. Ntainjua, S. J. Freakley, G. J. Hutchings, Top. Catal., 2012, 55, 718-722.

    68. [68] T. Deguchi, H. Yamano, S. Takenouchi, M. Lwamoto, Catal. Sci. Technol., 2018, 8, 1002-1015.

    69. [69] V. R. Choudhary, C. Samanta, T. V. Choudhary, Appl. Catal. A, 2006, 308, 128-133.

    70. [70] J. V. Weynbergh, J. P. Schoebrechts, J. C. Colery, US5447706, 1995.

    71. [71] K T. Chuang, US 5082647, 1992; K. T. Chuang, B. Zhou, WO 9314025, 1993; US 5846898, 1998.

    72. [72] S. Park, T. J. Kim, Y. Chung, S. H. Oh, I. K. Song, Catal. Lett., 2009, 130, 296-300.

    73. [73] A. Rodriguez-Gomez, F. Platero, A. Caballero, G. Colón, Mol. Catal., 2018, 445, 142-151.

    74. [74] V. R. Choudhary, C. Samanta, J. Catal., 2006, 238, 28-38.

    75. [75] V. R. Choudhary, C. Samanta, P. Jana, Appl. Catal. A, 2007, 317, 234-243.

    76. [76] P. Centomo, C. Meneghini, S. Sterchele, A. Trapananti, G. Aquilanti, M. Zecca, Catal. Today, 2015, 248, 138-141.

    77. [77] P. Biasi, S. Sterchele, F. Bizzotto, M. Manzoli, S. Lindholm, P. Ek, J. Bobacka, J. P. Mikkola, T. Salmi, Catal. Today, 2015, 246, 207-215.

    78. [78] P. Biasi, F. Menegazzo, F. Pinna, K. Eränen, P. Canu, T. O. Salmi, Ind. Eng. Chem. Res., 2010, 49, 10627-10632.

    79. [79] R. Kumar, S. Sithambaram, S. L. Suib, J. Catal., 2009, 262, 304-313.

    80. [80] G. Blanco-Brieva, M. C. Capel-Sanchez, M. Pilar de Frutos, A. Padilla-Polo, J. M. Campos-Martin, J. L. G. Fierro, Ind. Eng. Chem. Res., 2008, 47, 8011-8015.

    81. [81] R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Science, 1998, 280, 560-564.

    82. [82] M. Triki, S. Contreras, F. Medina, J. Sol-Gel Sci. Technol., 2014, 71, 96-101.

    83. [83] Y. Liu, Z. Yu, Y. Hou, Z. Peng, L. Wang, Z. Gong, J. Zhu, D. Su, Catal. Commun., 2016, 86, 63-66.

    84. [84] Y. Qin, M. Sun, H. Liu, J. Qu, Electrochim. Acta., 2015, 186, 328-336.

    85. [85] M. S. Yalfani, A. Georgi, S. Contreras, F. Medina, F. D. Kopinke, Appl. Catal. B, 2011, 104, 161-168.

    86. [86] M. Lin, T. Hogan, A. Sen, J. Am. Chem. Soc., 1997, 119, 6048-6053.

    87. [87] M. Rezaei, A. Najafi Chermahini, H. A. Dabbagh, Chem. Eng. J., 2017, 314, 515-525.

    88. [88] P. Borah, A. Ramesh, A. Datta, Catal. Commun., 2010, 12, 110-115.

    89. [89] E. V. Spinace, H. O. Pastore, U. Schuchardt, J. Catal., 1995, 157, 631-635.

    90. [90] C. Shi, B. Zhu, M. Lin, J. L, R. W. Catal. Today, 2011, 175, 398-403.

    91. [91] B. S. Uphade, M. Okumura, S. Tsubota, M. Haruta, Appl. Catal. A, 2000, 190, 43-50.

    92. [92] T. A. Nijhuis, M. Makkee, J. A. Moulijn, B. M. Weckhuysen, Ind. Eng. Chem. Res., 2006, 45, 3447-3459.

  • 加载中
计量
  • PDF下载量:  18
  • 文章访问数:  767
  • HTML全文浏览量:  142
文章相关
  • 收稿日期:  2019-10-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章