聚邻苯二胺修饰AgCl/g-C3N4纳米片复合光催化剂的制备及性能

孙林林 刘重阳 李金择 周亚举 王会琴 霍鹏伟 马长畅 闫永胜

引用本文: 孙林林,  刘重阳,  李金择,  周亚举,  王会琴,  霍鹏伟,  马长畅,  闫永胜. 聚邻苯二胺修饰AgCl/g-C3N4纳米片复合光催化剂的制备及性能[J]. 催化学报, 2019, 40(1): 80-94. doi: 10.1016/S1872-2067(18)63172-9 shu
Citation:  Linlin Sun,  Chongyang Liu,  Jinze Li,  Yaju Zhou,  Huiqin Wang,  Pengwei Huo,  Changchang Ma,  Yongsheng Yan. Fast electron transfer and enhanced visible light photocatalytic activity by using poly-o-phenylenediamine modified AgCl/g-C3N4 nanosheets[J]. Chinese Journal of Catalysis, 2019, 40(1): 80-94. doi: 10.1016/S1872-2067(18)63172-9 shu

聚邻苯二胺修饰AgCl/g-C3N4纳米片复合光催化剂的制备及性能

  • 基金项目:

    国家自然科学基金(21576125,21776117);中国博士后科学基金(2017M611716,2017M611734);江苏省六大人才高峰项目(XCL-014);镇江科技计划(SH2016012).

摘要: 近年来,工业社会的发展为人们的日常生活带来了便利,然而也引起了环境污染问题.尤其是抗生素的滥用,不仅会导致各种慢性疾病和微生物的传播,而且会使微生物对抗生素产生抵抗力.因此,寻找一种有效且环保的方法来解决抗生素残留问题至关重要.光催化技术作为一种"绿色"技术,具有充分利用太阳光、降低能耗和完全矿化有机物的突出优点,已被广泛应用于消除环境污染.
光敏半导体材料AgCl具有良好的光响应范围、无毒、易制备等优点,成为光催化降解污染物过程中促进光催化剂活性的理想材料.然而,制备的AgCl纳米颗粒易于团聚并发生光腐蚀.目前,片状g-C3N4具有比表面积大和适当的带隙等优点.因此,构筑AgCl/g-C3N4异质结复合光催化剂不仅可以降低光生电子和空穴的复合速率,加快电子传输,还可以解决AgCl纳米颗粒易于团聚的问题.此外,聚邻苯二胺(PoPD)作为一种导电聚合物,具有高效的电子传输能力,用其包裹AgCl可以防止光腐蚀现象的发生.
本文采用沉淀法和光引发聚合法合成了新型高效的PoPD/AgCl/g-C3N4复合材料,并以20mg/L四环素作为目标污染物测试其可见光下的催化性能.用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)和比表面积(BET)测定等方法表征分析了催化剂的结构特征、微观形貌和光学性能.XRD分析发现,PoPD未影响AgCl/g-C3N4催化剂的晶型结构.XPS结果表明,复合材料由C,N,Ag,O,Cl元素组成,并能得到它们的元素价态.由SEM照片可看到不规则薄片状g-C3N4表面均匀地负载着被PoPD包裹的AgCl颗粒.根据BET测试结果,片状的g-C3N4比表面积比块状的增大4倍,使目标污染物能与光催化剂表面活性物质充分接触反应.光催化性能测试结果进一步表明,PoPD/AgCl-35/g-C3N4在可见光下具有优异的光催化性能:可见光照射120min内,四环素的降解效率可达83.06%,降解速率常数是纯g-C3N4的7.98倍.循环实验表明,经过四次循环后催化剂仍具有优异的光催化降解性能,说明所合成的催化剂具有良好的稳定性.
用抗坏血酸、乙二胺四乙酸和异丙醇捕获剂进行了自由基捕获实验,进一步研究PoPD/AgCl/g-C3N4催化剂的光催化机理.结果表明,超氧自由基和空穴在降解四环素过程中起主要作用,羟基自由基的作用相对较小.通过价带谱测试和带隙计算出材料的价导带位置,并对可能的机理进行了相应的分析.总之,PoPD/AgCl/g-C3N4光催化剂具有良好的稳定性和优异的光催化性能,为制备高稳定性复合光催化剂提供了一种新技术.

English

    1. [1] D. J. Lapworth, N. Baran, M. E. Stuart, R. S. Ward, Environ. Pollut., 2012, 163, 287-303.

    2. [2] K. Kummerer, Chemosphere, 2009, 75, 435-441.

    3. [3] H. Zhang, X. Fan, X. Quan, S. Chen, H. Yu, Environ. Sci. Technol., 2011, 45, 5731-5736.

    4. [4] M. Isidori, M. Lavorgna, A. Nardelli, L. Pascarella, A. Parrella, Sci. Total. Environ., 2005, 346, 87-98.

    5. [5] T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, J. H. Boo, Thin Solid Films, 2005, 475, 171-177.

    6. [6] L. Jiang, Y. Wang, C. Feng, Procedia Eng., 2012, 45, 993-997.

    7. [7] D. Jing, L. Jing, H. Liu, S. Yao, L. Guo, Ind. Eng. Chem. Res., 2013, 52, 1982-1991.

    8. [8] T. S. Natarajan, K. R. Thampi, R. J. Tayade, Appl. Catal. B, 2018, 227, 296-311.

    9. [9] H. Dong, X. Guo, C. Yang, Z. Ouyang, Appl. Catal. B, 2018, 230, 65-76.

    10. [10] J. Yu, Q. Li, S. Liu, M. Jaroniec, Chem. Eur. J., 2013, 19, 2433-2441.

    11. [11] X. Wu, L. Wen, K. Lv, K. Deng, D. Tang, H. Ye, D. Du, S. Liu, M. Li, Appl. Surf. Sci., 2015, 358, 130-136.

    12. [12] Z. Zhou, M. Long, W. Cai, J. Cai, J. Mol. Catal A, 2012, 353-354, 22-28.

    13. [13] J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Appl. Surf. Sci., 2011, 257, 7083-7089.

    14. [14] P. Murugesan, S. Narayanan, M. Manickam, P. K. Murugesan, R. Subbiah, Appl. Surf. Sci., 2018, 450, 516-526.

    15. [15] H. Shen, H. Wei, Z. Pan, Y. Lu, Y. Wang, Appl. Surf. Sci., 2017, 423, 403-416.

    16. [16] Y. Pang, L. Song, C. Chen, L. Ge, J. Mater. Sci., 2017, 28, 12572-12579.

    17. [17] K. R. Reddy, M. Hassan, V. G. Gomes, Appl. Catal. A, 2015, 489, 1-16.

    18. [18] A. S. Ganeshraja, K. Zhu, K. Nomura, J. Wang, Appl. Surf. Sci., 2018, 441, 678-687.

    19. [19] L. Liu, W. Qi, X. Gao, C. Wang, G. Wang, J. Alloys Compd., 2018, 745, 155-163.

    20. [20] H. He, L. Huang, Z. Zhong, S. Tan, Appl. Surf. Sci., 2018, 441, 285-294.

    21. [21] Y. Zhou, J. Li, C. Liu, P. Huo, H. Wang, Appl. Surf. Sci., 2018, 458, 586-596.

    22. [22] Z. X. Zeng, K. X. Li, K. Wei, Y. H. Dai, L. S. Yan, H. Q. Guo, X. B. Luo, Chin. J. Catal., 2017, 38, 498-508.

    23. [23] J. Low, S. Cao, J. Yu, S. Wageh, Chem. Commun., 2014, 50, 10768-10777.

    24. [24] Y. H. Fu, Z. J. Li, Q. Q. Liu, X. F. Yang, H. Tang, Chin. J. Catal., 2017, 38, 2160-2170.

    25. [25] B. Luo, G. Liu, L. Wang, Nanoscale, 2016, 8, 6904-6920.

    26. [26] W. Ding, S. Q. Liu, Z. He, Chin. J. Catal., 2017, 38, 1711-1718.

    27. [27] Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, Appl. Catal. B, 2018, 230, 260-268.

    28. [28] L. Bi, X. Gao, L. Zhang, D. Wang, X. Zou, T. Xie, ChemSusChem, 2018, 11, 276-284.

    29. [29] M. Xu, L. Han, S. Dong, ACS Appl. Mater. Interfaces, 2013, 5, 12533-12540.

    30. [30] S. Kang, Y. Fang, Y. Huang, L. F. Cui, Y. Wang, H. Qin, Y. Zhang, X. Li, Y. Wang, Appl. Catal. B, 2015, 168-169, 472-482.

    31. [31] L. Zhou, W. Zhang, L. Chen, H. Deng, J. Wan, Catal. Commun., 2017, 100, 191-195.

    32. [32] R. Akbarzadeh, C. S. L. Fung, R. A. Rather, I. M. C. Lo, Chem. Eng. J., 2018, 341, 248-261.

    33. [33] P. Niu, L. Zhang, G. Liu, H. M. Cheng, Adv. Funct. Mater., 2012, 22, 4763-4770.

    34. [34] W. Ho, Z. Zhang, M. Xu, X. Zhang, X. Wang, Y. Huang, Appl. Catal. B, 2015, 179, 106-112.

    35. [35] H. J. Han, M. Fu, Y. L. Li, W. Guan, P. Lu, X. L. Hu, Chin. J. Catal., 2018, 39, 831-840.

    36. [36] Q. Yu, X. Li, L. Zhang, X. Wang, Y. Tao, X. Wang, J. Polym. Mater., 2015,32, 411-422.

    37. [37] Y. Sui, J. Liu, Y. Zhang, X. Tian, W. Chen, Nanoscale, 2013, 5, 9150-9155.

    38. [38] B. Vellaichamy, P. Periakaruppan, New J. Chem., 2017, 417, 123-7132.

    39. [39] P. Huo, Z. Lu, X. Liu, D. Wu, X. Liu, J. Pan, X. Gao, W. Guo, H. Li, Y. Yan, Chem. Eng. J., 2012, 189-190, 75-83.

    40. [40] P. Huo, Z. Lu, X. Liu, X. Liu, X. Gao, J. Pan, D. Wu, J. Ying, H. Li, Y. Yan, Chem. Eng. J., 2012, 198-199, 73-80.

    41. [41] Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, ACS Appl. Mater. Interfaces, 2014, 6, 14405-14414.

    42. [42] J. Jiang, L. Zhang, Chem. Eur. J., 2011, 17, 3710-3717.

    43. [43] A. Akhundi, A. Habibi-Yangjeh, Appl. Surf. Sci., 2015, 358, 261-269.

    44. [44] S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J. Xu, ACS Appl. Mater. Interfaces, 2014, 6, 22116-22125.

    45. [45] Y. Lin, D. Li, J. Hu, G. Xiao, J. Wang, W. Li, X. Fu, J. Phys.Chem. C, 2012, 116, 5764-5772.

    46. [46] C. X. Yang, W. P, Dong, G. W. Cui, Y. Q. Zhao, X. F. Shi, X. Y. Xia, B. Tang, W. L. Wang, Sci. Rep., 2017, 7, 3973.

    47. [47] J. Wen, J. Xie, Z. Yang, R. Shen, H. Li, X. Luo, X. Chen, X. Li, ACS Sus-tain. Chem. Eng., 2017, 5, 2224-2236.

    48. [48] L. Ye, D. Wang, S. Chen, ACS Appl. Mater. Interfaces, 2016, 8, 5280-5289.

    49. [49] Z. Jiang, J. Pan, B. Wang, C. Li, Appl. Surf. Sci., 2018, 436, 519-526.

    50. [50] J. Li, H. Hao, J. Zhou, W. Li, N. Lei, L. Guo, Appl. Surf. Sci., 2017, 422, 626-637.

    51. [51] J. W. Fu, B. C. Zhu, C. J. Jiang, B. Cheng, W. You, J. G. Yu, Small, 2017, 13, 1603938-1603946.

    52. [52] Z. Y. Lu, Z. H. Yu, J. B. Dong, M. S. Song, Y. Liu, X. L. Liu, D. Fan, Z. F. Ma, Y. S. Yan, P. W. Huo, RSC Adv., 2017, 7, 48894-48903.

    53. [53] B. Xu, Mater. Res. Innov., 2013, 17, 172-177.

    54. [54] C. J. Li, S. P. Wang, T. Wang, Y. J. Wei, P. Zhang, J. L. Gong, Small, 2014, 10, 2783-2790.

    55. [55] L. Tang, C. Feng, Y. Deng, G. Zeng, J. Wang, Y. Liu, H. Feng, J. Wang, Appl. Catal. B, 2018, 230, 102-114.

    56. [56] J. Q. Huang, Y. B. Jiang, G. J. Li, C. B. Xue, W. Guo, Renew. Energy, 2017, 111, 410-415.

    57. [57] Y. Lu, Y. Huang, Y. Zhang, J. J. Cao, H. Li, C. Bian, S. C. Lee, Appl. Catal. B, 2018, 231, 357-367.

    58. [58] Y. L. Wang, M. Z. Xia, K. B. Li, X. L, Shen, T. Muhanmood, F. Y. Wang, Phys. Chem. Chem. Phys., 2016, 18, 27257-27264.

    59. [59] T. T. Shen, D. Lang, F. Y. Cheng, Q. J. Xiang, ChemistrySelect, 2016, 1, 1006-1015.

    60. [60] J. Li, Y. C. Yin, E. Z. Liu, Y. N. Ma, J. Wan, J. Fan, X. Y. Hu, J. Hazard. Mater., 2017, 321, 183-192.

    61. [61] W. B. Li, F. X. Hua, T. Zhang, Y. P. Zhang, Q. Q. Xu, RSC Adv., 2016, 6, 52067-52075.

    62. [62] Z. Zhu, Y. Yu, H. Dong, Z. Liu, C. Li, P. Huo, Y. Yan, ACS Sustain. Chem. Eng., 2017, 5, 10614-10623.

    63. [63] J. Z. Li, Y. Ma, Z. F. Ye, M. J. Zhou, H. Q. Wang, C. C. Ma, D. P. Wang, P. W. Huo, Y. S. Yan, Appl. Catal. B, 2017, 204, 224-238.

    64. [64] W. J. Ong, L. K. Putri, L. L. Tan, S. P. Chai, S. T. Yong, Appl. Catal. B, 2016, 180, 530-543.

    65. [65] C. W. Huang, J. A. A. Valinton, Y. J. Hung, C. H. Chen, Sensor. Actuat. B, 2018, 266, 463-471.

    66. [66] X. Q. Hao, J. Zhou, Z. W. Cui, Y. C. Wang, Y. Wang, Z. G. Zou, Appl. Catal. B, 2018, 229, 41-51.

    67. [67] W. Zhao, B. L. Dai, F. X. Zhu, X. Y. Tu, J. M. Xu, L. L. Zhang, S. Y. Li, D. Y. C. Leung, C. Sun, Appl. Catal. B, 2018, 229, 171-180.

    68. [68] L. P. Wu, M. Y. Zhang, J. Li, C. P. Cen, X. J. Li, Res. Chem. Intermed., 2016, 42, 4569-4580.

    69. [69] W. Zhou, W. Li, J. Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. G. Fu, D. Y. Zhao, J. Am. Chem. Soc., 2014, 136, 9280-9283.

    70. [70] X. Chen, L. Liu, Y. L. Zhao, J. Zhang, D. L. Li, B. R. Hu, X. Hai, Chemis-trySelect, 2017, 2, 9256-9260.

    71. [71] H. Che, G. Che, E. Jiang, C. Liu, H. Dong, C. Li, J. Taiwan. Inst. Chem. Eng., 2018, 91, 224-234.

    72. [72] A. Olad, S. Shakoori, J. Magn. Magn. Mater., 2018, 458, 335-345.

    73. [73] Y. F. Zhu, F. F. Wang, H. L. Zhang, X. B. Lv, Z. F. Hu, H. Han, X. Y. Fan, J. Y. Ji, X. D. Guo, J. Alloys Compd., 2018, 747, 276-282.

    74. [74] Y. H. Ao, J. Q. Bao, P. F. Wang, C. Wang, J. Alloys Compd., 2017, 698, 410-419.

    75. [75] X. G. Li, X. L. Ma, J. Sun, M. R. Huang, Langmuir, 2009, 25, 1675-1684.

    76. [76] W. Gac, M. Greluk, G. Słowik, S. Turczyniak-Surdacka, Appl. Surf. Sci., 2018, 440, 1047-1062.

    77. [77] F. Guo, W. L. Shi, H. B. Wang, M. M. Han, W. S. Guan, H. Huang, Y. Liu, Z. H. Kang, J. Hazard. Mater., 2018, 349, 111-118.

    78. [78] W. He, H. Jia, D. Yang, P. Xiao, X. Fan, Z. Zhi, H. K. Kim, W. G. Wamer, J. J. Yin, ACS Appl. Mater. Interfaces, 2015, 7, 16440-16449.

    79. [79] W. He, H. Wu, W. G. Wamer, H. K. Kim, J. Zheng, H. Jia, Z. Zheng, J. J. Yin, ACS Appl. Mater. Interfaces, 2014, 6, 15527-15535.

    80. [80] F. Guo, W. Shi, C. Zhu, H. Li, Z. Kang, Appl. Catal. B, 2018, 226, 412-420.

    81. [81] X. Miao, H. Lei, S. Dong, ACS Appl. Mater. Interfaces, 2013, 5, 12533-12540.

    82. [82] L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, ACS Catal., 2012, 2, 1677-1683.

    83. [83] C. H. Liu, F. Wang, J. Zhang, K. Wang, Y. Y. Qiu, Q. Liang, Z. D. Chen, Nano-Micro Lett., 2018, 10, 37.

    84. [84] M. Miyauchi, Phys. Chem. Chem. Phys., 2008, 10, 6258-6265.

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  1071
  • HTML全文浏览量:  75
文章相关
  • 收稿日期:  2018-07-25
  • 修回日期:  2018-09-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章