
Citation: Yongchuan Wu, Zhongmin liu, Yaru Li, Jitao Chen, Xixi Zhu, Ping Na. Construction of 2D-2D TiO2 nanosheet/layered WS2 heterojunctions with enhanced visible-light-responsive photocatalytic activity[J]. Chinese Journal of Catalysis, 2019, 40(1): 60-69. doi: 10.1016/S1872-2067(18)63170-5

构建2D-2D TiO2纳米片/层状WS2异质结用以增强可见光响应光催化活性
本文采用一步水热法,以二维(2D)TiO2纳米片作基质材料,直接在其表面原位生长WS2层,制得了2D-2D TiO2纳米片/层状WS2(TNS/WS2)异质结.XRD及Raman结果表明,层状WS2与TiO2纳米片紧密结合在一起,且两者之间形成了W=O键.TEM结果显示,层状WS2以面-面堆叠方式均匀地包覆在TiO2纳米片表面,包覆层数约为4层.光催化性能测试结果表明,可见光照射下,TNS/WS2异质结对RhB的光催化降解能力高于原始TiO2纳米片和层状WS2,光催化活性得到明显增强.
紫外可见光谱试验结果显示,层状WS2的引入极大地增强了异质结的光吸收性能.PL光谱测试表明,TNS/WS2异质结具有更高效的载流子分离效率.为了进一步证实是光吸收性能的提升还是载流子分离效率的增强对光催化性能提起其主要作用,本文还研究了3D-2D TiO2空心微球/层状WS2(THS/WS2)复合材料.结果表明,TNS/WS2异质结比THS/WS2复合材料具有更高效的光生电子和空穴的分离能力.从而证明了TiO2纳米片与层状WS2之间完美的2D-2D纳米界面和紧密的界面结合,显著增加了载流子分离效率,因此光催化活性得到明显提高.
为了研究TNS/WS2异质结光催化剂的光催化机理,采用重铬酸钾、草酸铵、叔丁醇和对苯醌作自由基猝灭剂进行了自由基捕捉剂实验.结果表明,空穴在RhB降解过程中起主要作用,超氧自由基起次要作用.基于自由基猝灭实验结果和带隙结构分析,提出了TNS/WS2异质结对RhB的光催化机理为双转移光催化机理.可见,界面异质结工程化可能是制备高效和环境稳定的光催化剂的新思路.
English
Construction of 2D-2D TiO2 nanosheet/layered WS2 heterojunctions with enhanced visible-light-responsive photocatalytic activity
-
Key words:
- WS2
- / TiO2
- / Nanosheet
- / Heterojunction
- / Photocatalysis
- / Visible-light responsive
-
-
[1] Z. Chen, C. Feng, W. Li, Z. Sun, J. Hou, X. Li, L. Xu, M. Sun, Y. Bu, Chin. J. Catal., 2018, 39, 841-848.
-
[2] F. Wang, P. Chen, Y. Feng, Z. Xie, Y. Liu, Y. Su, Q. Zhang, Y. Wang, K. Yao, W. Lv, G. Liu, Appl. Catal. B, 2017, 207, 103-113.
-
[3] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.
-
[4] Z. Wu, Y. Xue, Z. Zou, X. Wang, F. Gao, J. Colloid Interf. Sci., 2017, 490, 420-429.
-
[5] Q. Xiang, K. Lv, J. Yu, Appl. Catal. B, 2010, 96, 557-564.
-
[6] S. Shang, X. Jiao, D. Chen, ACS Appl. Mater. Interf., 2012, 4, 860-865.
-
[7] W. Wang, J. Fang, S. Shao, M. Lai, C. Lu, Appl. Catal. B, 2017, 217, 57-64.
-
[8] Y. Cao, Z. Xing, Z. Li, X. Wu, M. Hu, X. Yan, Q. Zhu, S. Yang, W. Zhou, J. Hazard. Mater., 2018, 343, 181-190.
-
[9] Q. Wang, J. Huang, H. Sun, K. Q. Zhang, Y. Lai, Nanoscale, 2017, 9, 16046-16058.
-
[10] T. Yang, J. Peng, Y. Zheng, X. He, Y. Hou, L. Wu, X. Fu, Appl. Catal. B, 2018, 221, 223-234.
-
[11] Z. Zhang, D. Jiang, D. Li, M. He, M. Chen, Appl. Catal. B, 2016, 183, 113-123.
-
[12] D. Jiang, J. Li, C. Xing, Z. Zhang, S. Meng, M. Chen, ACS Appl. Mater. Interf., 2015, 7, 19234-19242.
-
[13] R. Lv, H. Terrones, A. L. Elías, N. Perea-López, H. R. Gutiérrez, E. Cruz-Silva, L. P. Rajukumar, M. S. Dresselhaus, M. Terrones, Nano Today, 2015, 10, 559-592.
-
[14] X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Chem. Soc. Rev., 2015, 44, 8859-8876.
-
[15] X. Zhao, X. Ma, J. Sun, D. Li, X. Yang, ACS Nano, 2016, 10, 2159-2166.
-
[16] J. Shi, R. Tong, X. Zhou, Y. Gong, Z. Zhang, Q. Ji, Y. Zhang, Q. Fang, L. Gu, X. Wang, Z. Liu, Y. Zhang, Adv. Mater., 2016, 28, 10664-10672.
-
[17] M. A. Worsley, S. J. Shin, M. D. Merrill, J. Lenhardt, A. J. Nelson, L. Y. Woo, A. E. Gash, T. F. Baumann, C. A. Orme, ACS Nano, 2015, 9, 4698-4705.
-
[18] X. Li, Z. Wang, J. Zhang, C. Xie, B. Li, R. Wang, J. Li, C. Niu, Carbon, 2015, 85, 168-175.
-
[19] Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, Adv. Mater., 2015, 27, 363-369.
-
[20] D. Jing, L. Guo, Catal. Commun., 2007, 8, 795-799.
-
[21] S. Cao, T. Liu, S. Hussain, W. Zeng, X. Peng, F. Pan, Phys. E, 2015, 68, 171-175.
-
[22] X. Ren, H. Qiao, Z. Huang, P. Tang, S. Liu, S. Luo, H. Yao, X. Qi, J. Zhong, Opt. Commun., 2018, 406, 118-123.
-
[23] X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, J. Am. Chem. Soc., 2009, 131, 3152-3153.
-
[24] Y. Wu, Z. Liu, J. Chen, X. Cai, P. Na, Mater. Lett., 2017, 189, 282-285.
-
[25] Z. A. Huang, Z. Wang, K. Lv, Y. Zheng, K. Deng, ACS Appl. Mater. Interf., 2013, 5, 8663-8669.
-
[26] Y. Tian, Y. Song, M. Dou, J. Ji, F. Wang, Appl. Surf. Sci., 2018, 433, 197-205.
-
[27] W. Gao, M. Wang, C. Ran, L. Li, Chem. Commun., 2015, 51, 1709-1712.
-
[28] R. Kaplan, B. Erjavec, G. Dražić, J. Grdadolnik, A. Pintar, Appl. Catal. B, 2016, 181, 465-474.
-
[29] X. Guo, J. Ji, Q. Jiang, L. Zhang, Z. Ao, X. Fan, S. Wang, Y. Li, F. Zhang, G. Zhang, W. Peng, ACS Appl. Mater. Interf., 2017, 9, 30591-30598.
-
[30] T. Wang, W. Quan, D. Jiang, L. Chen, D. Li, S. Meng, M. Chen, Chem. Eng. J., 2016, 300, 280-290.
-
[31] J. Liang, C. Wang, P. Zhao, Y. Wang, L. Ma, G. Zhu, Y. Hu, Z. Lu, Z. Xu, Y. Ma, T. Chen, Z. Tie, J. Liu, Z. Jin, ACS Appl. Mater. Interf., 2018, 10, 6084-6089.
-
[32] T. Luo, P. Wang, Z. Qiu, S. Yang, H. Zeng, B. Cao, Chem. Commun., 2016, 52, 10147-10150.
-
[33] T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li, J. Xiong, Adv. Energy Mater., 2017, 7, 1601843.
-
[34] C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu, S. Zhang, Y. Zeng, Y. Xu, Appl. Catal. B, 2015, 164, 1-9.
-
[35] L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small, 2016, 12, 1527-1536.
-
[36] Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang, Phys. Chem. Chem. Phys., 2011, 13, 15546-15553.
-
[37] Z. Ye, T. Cao, K. O'Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, X. Zhang, Nature, 2014, 513, 214-218.
-
[38] J. Gao, C. Liu, F. Wang, L. Jia, K. Duan, T. Liu, Nanoscale Res. Lett., 2017, 12, 377.
-
[39] J. Gao, C. Liu, F. Wang, L. Jia, K. Duan, T. Liu, P. Wang, L. Xu, Y. Ao, W. Chao, J. Colloid Interf. Sci., 2017, 495, 122-129.
-
[40] S. Issarapanacheewin, K. Wetchakun, S. Phanichphant, W. Ka-ngwansupamonkon, N. Wetchakun, Catal. Today, 2016, 278, 280-290.
-
[41] Y. Li, K. Lv, W. Ho, F. Dong, X. Wu, Y. Xia, Appl. Catal. B, 2017, 202, 611-619.
-
-

计量
- PDF下载量: 11
- 文章访问数: 961
- HTML全文浏览量: 176