
Citation: Haojie Wang, Chun Chen, Haimin Zhang, Guozhong Wang, Huijun Zhao. An efficient and reusable bimetallic Ni3Fe NPs@C catalyst for selective hydrogenation of biomass-derived levulinic acid to γ-valerolactone[J]. Chinese Journal of Catalysis, 2018, 39(10): 1599-1607. doi: 10.1016/S1872-2067(18)63105-5

乙酰丙酸选择性加氢合成γ-戊内酯中高效和可循环使用的Ni3Fe NPs@C双金属催化剂
在特定温度下,金属离子与碳基底存在较强的相互作用.鉴于此,本文通过一步碳热还原法合成了活性炭负载的Ni3Fe双金属催化剂(Ni3Fe NPs@C).该催化剂在LA-to-GVL转化体系中展现了直接加氢(DH)和转移加氢(TH)双功能催化特性.首先,考察了其在DH体系中的反应特性:在130℃和2 MPa氢压反应条件下经2 h反应,LA转化率达到93.8%,GVL选择性为95.5%,GVL产率是相应的单金属Ni/C和Fe/C催化剂的6倍和40倍.此外,在TH催化反应体系中,在180℃,0.5 h和无外加氢源的反应条件下,以异丙醇为反应溶剂和供氢体,LA几乎完全转化为GVL,其反应效率同样相较于单金属Ni/C和Fe/C催化剂大幅度提高.所合成的Ni3Fe NPs@C双金属催化剂DH和TH催化性能优于绝大多数报道的LA加氢贵金属和非贵金属催化剂.而且,该催化剂具有良好的循环利用性能,经过四次循环,其结构和化学状态没有发生明显的改变,稳定性明显优于商业化的Ru/C催化剂.此外,通过系统分析其催化性能以及材料结构,明确了该催化剂在LA的DH和TH反应体系中的活性位点,并提出了可能的反应路径.该研究为其它类型的DH和TH反应体系以及生物质高效转化过程提供了新的催化剂设计思路.并且这种催化剂及其制备方法简单、绿色,易于工业化推广和应用.
English
An efficient and reusable bimetallic Ni3Fe NPs@C catalyst for selective hydrogenation of biomass-derived levulinic acid to γ-valerolactone
-
Key words:
- Levulinic acid
- / γ-valerolactone
- / Bimetallic catalyst
- / Hydrogenation
- / Dual-catalytic functionality
-
-
[1] X. Li, P. Jia, T. Wang, ACS Catal., 2016, 6, 7621-7640.
-
[2] G. W. Huber, S. Iborra, A. Corma, Chem Rev., 2006, 106, 4044-4098.
-
[3] B. Liu, Z. Zhang, ACS Catal., 2016, 6, 326-338.
-
[4] M. Besson, P. Gallezot, C. Pinel, Chem. Rev., 2014, 114, 1827-1870.
-
[5] J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J. A. Dumesic, Science, 2010, 327, 1110-1114.
-
[6] C. X. Xiao, T. W. Goh, Z. Y. Qi, S. Goes, K. Brashler, C. Perez, W. Y. Huang, ACS Catal., 2016, 6, 593-599.
-
[7] C. Michel, J. Zaffran, A. M. Ruppert, J. Matras-Michalska, M. Jedrzejczyk, J. Grams, P. Sautet, Chem. Commun., 2014, 50, 12450-12453.
-
[8] F. Pileidis, M. Tabassum, S. Coutts, M. M. Ttitirici, Chin. J. Catal., 2014, 35, 929-936.
-
[9] I. T. Horvath, Green Chem., 2008, 10, 1024-1028.
-
[10] D. Li, W. Ni, Z. Hou, Chin. J. Catal., 2017, 38, 1784-1793.
-
[11] V. Fábos, M. Y. Lui, Y. F. Mui, Y. Y. Wong, L. T. Mika, L. Qi, E. Cséfalvay, V. Kovács, T. Szűcs, I. T. Horváth, ACS Sustainable Chem. Eng., 2015, 3, 1899-1904.
-
[12] M. Chalid, A. A. Broekhuis, H. J. Heeres, J. Mol. Catal. A, 2011, 341, 14-21.
-
[13] H. A. Schuette, R. W. Thomas, J. Am. Chem. Soc., 1930, 52, 3010-3012.
-
[14] K. Shimizu, S. Kanno, K. Kon, Green Chem., 2014, 16, 3899-3903.
-
[15] A. M. Hengne, C. V. Rode, Green Chem., 2012, 14, 1064-1072.
-
[16] S. Y. Fu, Y. Z. Li, W. Chu, C. Lia, D. G. Tong, Catal. Sci. Technol., 2015, 5, 1638-1649.
-
[17] W. Luo, M. Sankar, A. M. Beale, Q. He, C. J. Kiely, P. C. Bruijnincx, B. M. Weckhuysen, Nat. Commun., 2015, 6, 6540.
-
[18] Z. P. Yan, L. Lin, S. J. Liu, Energy Fuels, 2009, 23, 3853-3858.
-
[19] X. Du, Y. Liu, J. Wang, Y. Cao, K. Fan, Chin. J. Catal., 2013, 34, 993-1001.
-
[20] I. Obregon, E. Corro, U. Izquierdo, J. Requies, P. L. Arias, Chin. J. Catal., 2014, 35, 656-662.
-
[21] S. G. Wettstein, J. Q. Bond, D. M. Alonso, H. N. Pham, A. K. Datye, J. A. Dumesic, Appl. Catal. B, 2012, 117, 321-329.
-
[22] E. F. Mai, M. A. Machado, T. E. Davies, J. A. Lopez-Sanchez, V. Teixeira da Silva, Green Chem., 2014, 16, 4092-4097.
-
[23] M. A. A. Aziz, A. A. Jalil, S. Triwahyono, A. Ahmad, Green Chem., 2015, 17, 2647-2663.
-
[24] P. Gallezot, P. J. Cerino, B. Blanc, G. Flèche, P. Fuertes, J. Catal., 1994, 146, 93-102.
-
[25] K. Yang, M. Zhang, Y. Yu, Phys. Chem. Chem. Phys., 2015, 17, 29616-29627.
-
[26] S. K. Singh, A. K. Singh, K. Aranishi, Q. Xu, J. Am. Chem. Soc., 2011, 133, 19638-19641.
-
[27] G. Chieffi, M. Braun, D. Esposito, ChemSusChem, 2015, 8, 3590-3594.
-
[28] G. Chieffi, C. Giordano, M. Antonietti, D. Esposito, J. Mater. Chem. A, 2014, 2, 11591-11596.
-
[29] X. G. Lu, G. Y. Liang, Y. M. Zhang, Mater. Sci. Eng. B, 2007, 139, 124-127.
-
[30] D. G. Tong, D. M. Tang, W. Chu, G. F. Gu, P. Wu, J. Mater. Chem. A, 2013, 1, 6425-6532.
-
[31] Q. Liao, R. Tannenbaum, Z. L. Wang, J. Phys. Chem. B, 2006, 110, 14262-14265.
-
[32] D. K. Liu, A. L. Lai, R. J. Chin, Mater. Lett., 1991, 10, 318-322.
-
[33] S. Xue, M. Li, Y. Wang, X. Xu, Thin Solid Films, 2009, 517, 5922-5926.
-
[34] L. Q. Xu, L. Y. Chen, H. F. Huang, R. Xie, W. B. Xia, J. Wei, W. Zhong, S. L. Tang, Y. W. Du, J. Alloys Compd., 2014, 593, 93-96.
-
[35] P. Y. Li, J. A. Syed, X. K. Meng, J. Alloys Compd., 2012, 512, 47-51.
-
[36] X. M. Zhou, X. W. Wei, Cryst. Growth Des., 2009, 9, 7-12.
-
[37] J. L. H. Chau, Mater. Lett., 2007, 61, 2753-2756.
-
[38] J. H. Kim, J. Kim, S. K. Lim, C. K. Kim, C. S. Yoon, J. Magn. Magn. Mater., 2007, 310, 2402-2404.
-
[39] L. B. Hoch, E. J. Mack, B. W. Hydutsky, J. M. Hershman, J. M. Skluzacek, T. E. Mallouk, Environ. Sci. Technol., 2008, 42, 2600-2605.
-
[40] W. B. Gong, C. Chen, H. M. Zhang, Y. Zhang, Y. X. Zhang, G. Z. Wang, H. J. Zhao, Mol. Catal., 2017, 429, 51-59.
-
[41] W. Gong, C. Chen, Y. Zhang, H. Zhou, H. Wang, H. Zhang, Y. Zhang, G. Wang, H. Zhao, ACS Sustainable Chem. Eng., 2017, 5, 2172-2180.
-
[42] G. T. Fu, Z. M. Cui, Y. F. Chen, Y. T. Li, Y. W. Tang, J. B. Goodenough, Adv. Energy Mater., 2017, 7, 1601172.
-
[43] G. H. Yu, C. L. Chai, F. W. Zhu, J. M. Xiao, W. Y. Lai, Appl. Phys. Lett., 2001, 78, 1706-1708.
-
[44] O. A. Abdelrahman, A. Heyden, J. Q. Bond, ACS Catal., 2014, 4, 1171-1181.
-
-

计量
- PDF下载量: 3
- 文章访问数: 514
- HTML全文浏览量: 68