Pb-Pt/AC催化甘油一步法制备丙酮酸

张晨 王涛 丁云杰

引用本文: 张晨,  王涛,  丁云杰. Pb-Pt/AC催化甘油一步法制备丙酮酸[J]. 催化学报, 2017, 38(5): 928-938. doi: 10.1016/S1872-2067(17)62835-3 shu
Citation:  Chen Zhang,  Tao Wang,  Yunjie Ding. One-step synthesis of pyruvic acid from glycerol oxidation over Pb promoted Pt/activated carbon catalysts[J]. Chinese Journal of Catalysis, 2017, 38(5): 928-938. doi: 10.1016/S1872-2067(17)62835-3 shu

Pb-Pt/AC催化甘油一步法制备丙酮酸

  • 基金项目:

    国家自然科学基金(21176236).

摘要: 生物质能具有绿色环保、可再生、来源广泛和安全性高等优点,成为当前的研究热点.作为生物柴油的主要副产物,甘油是一种重要的生物质平台化合物.甘油的高效利用,不仅能够获得重要的精细化学品及聚合物,也可以延长生物柴油的产业链,降低其生产成本,增加其市场竞争力.
丙酮酸是一种弱有机酸,为生物体内葡萄糖分解代谢的中间产物,在生物能量代谢和物质代谢过程中起着重要的枢纽作用.同时,由于它同时含有羧基和酮羰基,具有很强的反应性,可参与多种化学反应,在化学工业中有广泛应用.目前,工业上主要采用酒石酸脱水脱羧法生产丙酮酸,丙酮酸收率可达50-55%,但生产过程需要消耗大量的KHSO4粉末,生产成本高,且高耗能高污染,不符合可持续发展的要求.因此,利用可再生资源甘油在温和条件下生产丙酮酸显现出良好的应用前景.
目前,由甘油一步法获得丙酮酸仅可通过发酵法实现,但是其规模化生产存在效率低、废弃物污染等问题.因此,研究化学方法由甘油一步制备丙酮酸可行也十分必要.本课题组以Pt/AC或Cu-Pt/AC为催化剂进行甘油氧化制备乳酸的研究,所得产物中几乎未检出丙酮酸;当以Pb-Pt/C为催化剂进行乳酸脱氢氧化制备丙酮酸,可获得较高选择性的丙酮酸.因此,本文通过向Pt/AC催化剂中引入Pb助剂,以期调变甘油氧化的产物分布,从而获得相对高的丙酮酸选择性.
通过浸渍-沉积沉淀法(Im-DP)制备了一系列不同Pb载量(1-7.0 wt%)的xPb-5Pt/AC-Im-DP催化剂,并采用不同方法制备了一系列5Pb-5Pt/AC催化剂,用于在温和条件下甘油选择性氧化制备丙酮酸反应中.结果表明,Pb载量和催化剂制备方法都对其催化活性有显著影响.当xPb-5Pt/AC-Im-DP催化剂中Pb载量为1%时,甘油转化率和丙酮酸选择性均较单金属5Pt/AC催化剂高,但当Pb载量继续升高至3%及以上时,甘油转化率明显下降.我们推测这与Pb3(CO32(OH)2物种的形成有关.采用该方法制备催化剂时, Pb载量宜为5.0 wt%.
保持Pt和Pb载量均为5.0 wt%,采用共沉积沉淀(Co-DP)、共浸渍(Co-Im)、以及对催化剂进行500 ℃氩气焙烧等,制备了具有Pb3(CO32(OH)2物种、铂铅合金物种(PtPb和PtxPb)和两物种均没有的5Pb-5Pt/AC催化剂.通过评价它们的催化性能,进一步探究了Pb3(CO32(OH)2物种、铂铅合金物种、表面金属价态与催化剂活性的关系.实验表明,Pb3(CO32(OH)2和表面Pb0物种不利于甘油的转化,铂铅合金对甘油转化有一定的促进作用,对丙酮酸生成显现出明显促进作用.通过对Co-DP、Im-DP催化剂进行500 ℃氩气焙烧,能够除去Pb3(CO32(OH)2物种,同时形成铂铅合金.
综上,本文在温和条件下,采用Pb-Pt/AC催化剂进行甘油选择性氧化制备丙酮酸反应.采用优化的方法制备的5Pb-5Pt/AC催化剂在90 ℃条件下反应10 h,丙酮酸收率可达18.4%,这是目前甘油一步法氧化制备丙酮酸的最高值.进一步优化反应条件、催化剂组成与结构,探索反应机理仍十分必要.

English

    1. [1] S. Bagheri, N. M. Julkapli, W. A. Yehye. Renewable Sustainable Energy Rev., 2015, 41, 113–127.

    2. [2] M. Anitha, S. K. Kamarudin, N. Kofli. Chem. Eng. J., 2016, 295, 119–130.

    3. [3] C. H. Zhou, J. N. Beltramini, Y. X. Fan, G. Q. Lu. Chem. Soc. Rev., 2008, 37, 527–549.

    4. [4] B. Katryniok, H. Kimura, E. Skrzyńska, J. S. Girardon, P. Fongarland, M. Capron, R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil. Green Chem., 2011, 13, 1960–1979.

    5. [5] A. Villa, N. Dimitratos, C. E. Chan-Thaw, C. Hammond, L. Prati, G. J. Hutchings. Acc. Chem. Res., 2015, 48, 1403–1412.

    6. [6] L. F. Gong, Y. Lu, Y. J. Ding, R. H. Lin, J. W. Li, W. D. Dong, T. Wang, W. M. Chen. Appl. Catal. A, 2010, 390, 119–126.

    7. [7] W. T. Luo, Y. Lyu, L. F. Gong, H. Du, M. Jiang, Y. J. Ding. Chin. J. Catal., 2016, 37, 2009–2017.

    8. [8] G. S. Foo, D. Wei, D. S. Sholl, C. Sievers. ACS Catal., 2014, 4, 3180–3192.

    9. [9] C. J. Jia, Y. Liu, W. Schmidt, A. H. Lu, F. Schüth. J. Catal., 2010, 269, 71–79.

    10. [10] M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina, B. F. Sels. Energy Environ. Sci., 2013, 6, 1415–1442.

    11. [11] A. Corma, S. Iborra, A. Velty. Chem. Rev., 2007, 107, 2411–2502.

    12. [12] P. Xu, J. H. Qiu, C. Gao, C. Q. Ma. J. Biosci. Bioeng., 2008, 105, 169–175.

    13. [13] T. Yasukawa, W. Ninomiya, K. Ooyachi, N. Aoki, K. Mae. Ind. Eng. Chem. Res., 2011, 50, 3858–3863.

    14. [14] H. H. C. M. Pinxt, B. F. M. Kuster, G. B. Marin. Appl. Catal. A., 2000, 191, 45–54.

    15. [15] T. Tsujino, S. Ohigashi, S. Sugiyama, K. Kawashiro, H. Hayashi. J. Mol. Catal., 1992, 71, 25–35.

    16. [16] C. Zhang, T. Wang, Y. J. Ding. Appl. Catal. A, 2017, 533, 59–65.

    17. [17] T. V. Finogenova, I. G. Morgunov, S. V. Kamzolova, O. G. Chernyavskaya. Appl. Biochem. Microbiol., 2005, 41, 418–425.

    18. [18] S. Sugiyama, T. Kikumoto, H. Tanaka, K. Nakagawa, K. I. Sotowa, K. Maehara, Y. Himeno, W. Ninomiya. Catal. Lett., 2009, 131, 129–134.

    19. [19] M. Ai. Appl. Catal. A, 2002, 234, 235–243.

    20. [20] L. S. Sharninghausen, J. Campos, M. G. Manas, R. H. Crabtree. Nat. Commun., 2014, 5, 5084.

    21. [21] Y. H. Shen, S. H. Zhang, H. J. Li, Y. Ren, H. C. Liu. Chem. Eur. J., 2010, 16, 7368–7371.

    22. [22] R. K. P. Purushothaman, J. van Haveren, D. S. van Es, I. Melián Cabrera, J. D. Meeldijk, H. J. Heeres. Appl. Catal. B, 2014, 147, 92–100.

    23. [23] D. Roy, B. Subramaniam, R. V. Chaudhari. ACS Catal., 2011, 1, 548–551.

    24. [24] H. Hayashi, S. Sugiyama, Y. Katayama, K. Kawashiro, N. Shigemoto. J. Mol. Catal., 1994, 91, 129–137.

    25. [25] C. Zhang, T. Wang, X. Liu, Y. J. Ding. Chin. J. Catal., 2016, 37, 502–509.

    26. [26] C. Zhang, T. Wang, X. Liu, Y. J. Ding. J. Mol. Catal. A, 2016, 424, 91–97.

    27. [27] S. Y. Lee, S. J. Park. Carbon, 2014, 68, 112–117.

    28. [28] S. Sarig, F. Kahana. Thermochim. Acta, 1976, 14, 263–268.

    29. [29] W. E. Morgan, J. R. Van Wazer. J. Phys. Chem., 1973, 77, 964–969.

    30. [30] V. I. Nefedov, Y. V. Salyn, P. M. Solozhenkin, G. Y. Pulatov. Surf. Interface Anal., 1980, 2, 170–172.

    31. [31] J. A. Taylor, D. L. Perry. J. Vac. Sci. Technol. A, 1984, 2, 771–774.

    32. [32] E. G. Rodrigues, S. A. C. Carabineiro, J. J. Delgado, X. Chen, M. F. R. Pereira, J. J. M. Órfão. J. Catal., 2012, 285, 83–91.

    33. [33] S. E. Davis, M. S. Ide, R. J. Davis. Green Chem., 2013, 15, 17–45.

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  868
  • HTML全文浏览量:  205
文章相关
  • 发布日期:  2017-05-10
  • 收稿日期:  2017-03-09
  • 修回日期:  2017-04-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章