
Citation: Chengcheng Zhao, Yonghui Zhao, Shenggang Li, Yuhan Sun. Effect of Pd doping on CH4 reactivity over Co3O4 catalysts from density-functional theory calculations[J]. Chinese Journal of Catalysis, 2017, 38(5): 813-820. doi: 10.1016/S1872-2067(17)62817-1

Pd掺杂对Co3O4催化CH4燃烧反应的影响:密度泛函理论计算
由于Co3O4表面电子结构比较复杂,因此本文基于Co3O4(001)晶面的两种不同暴露面来构建和模拟Pd掺杂Co3O4表面Pd-O位点的甲烷反应活性.对于Co3O4(001)–A晶面,暴露面金属离子只有未饱和的八面体Coo,而(001)–B晶面,还有四面体Cot.由于Pd取代Cot后所形成的Pd/(001)–B面更不稳定,因而选择了较稳定的Pd替换Coo结构模型.基于第一性原理PBE+U计算的Pd/(001)表面甲烷活化能垒来探讨Pd掺杂对Co3O4表面催化活性的影响.计算表明,甲烷在Pd掺杂的(001)面上最低解离能垒为0.68 eV,明显低于在Co3O4(001)和(011)面的(分别为0.98和0.89 eV),表明Pd掺杂的(001)表面催化活性要远高于纯的Co3O4(001)和(011)表面.
为了进一步理解Pd掺杂影响Co3O4表面甲烷反应活性的原因,我们计算了反应位点相关原子的Bader电荷.结果表明,当CH3δ–吸附于Pd/(001)–A面Pd位点时,Pd较(001)面上Co位点能从CH3δ–获得更多电子,这与Pd较Co有更强的氧化性一致.我们也对比了(001)–A,(001)–B,Pd/(001)–A和Pd/(001)–B在氧气分压为常压及不同温度下表面能的大小,并发现在与反应相关的温度区间(001)–A表面较(001)–B表面更为稳定,同样地Pd/(001)–A表面也较Pd/(001)–B表面更为稳定,且Pd/(001)–A表面与(001)–A表面稳定性差别不大,因此Pd单原子掺杂的(001)表面模型在热力学上较为稳定,且根据计算的能垒,(001)–A和Pd/(001)–A表面对甲烷活化的贡献最大.
为了更好与实验结果对比,我们构建了简单的动力学模型,并计算了甲烷在Co3O4(001),(011)和1%,2%,3% Pd掺杂的Co3O4(001)表面的甲烷燃烧速率.计算表明即使较低量的Pd也可明显提高甲烷燃烧速率,与实验数据吻合较好,表明掺杂Pd显著增加Co3O4催化甲烷燃烧.
English
Effect of Pd doping on CH4 reactivity over Co3O4 catalysts from density-functional theory calculations
-
-
[1] J. B. Branco, A. C. Ferreira, A. P. Goncalves, C. O. Soares, T. A. Gasche, J. Catal., 2016, 341, 24-32.
-
[2] J. Matthiesen, R. S. Smith, B. D. Kay, J. Chem. Phys., 2010, 133, 174505.
-
[3] A. Wada, N. Mochizuki, K. Hiraoka, Astrophys. J., 2006, 644, 300-306.
-
[4] J. J. Wu, S. Qin, C. W. Hu, Catal. Lett., 2007, 118, 285-289.
-
[5] T. Baba, Y. Abe, Appl. Catal. A., 2003, 250, 265-270.
-
[6] B. C. Enger, R. Lodeng, A. Holmen, Appl. Catal. A., 2008, 346, 1-27.
-
[7] Y. G. Wang, X. F. Yang, L.H. Hu, Y. D. Li, J. Li, Chin. J. Catal., 2014,35, 462-467.
-
[8] Y. H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc., 2013, 135, 15425-15442.
-
[9] X. F. Weng, H. J. Ren, M. S. Chen, H. L. Wan, ACS Catal., 2014, 4, 2598-2604.
-
[10] Y. Mahara, J. Ohyama, T. Tojo, K. Murata, H. Ishikawa, A. Satsuma, Catal. Sci. Technol., 2016, 6, 4773-4776.
-
[11] R. Abbasi, G. Huang, G. M. Istratescu, L. Wu, R. E. Hayes, Can. J. Chem. Eng., 2015, 93, 1474-1482.
-
[12] R. J. H. Grisel, B. E. Neiuwenhuys, Catal. Today, 2001, 64, 69-81.
-
[13] T. Odedairo, J. Ma, J. L. Chen, Z. H. Zhu, Chem. Eng. Technol., 2016, 39, 1551-1560.
-
[14] H. M. Liu, Y. M. Li, H. Wu, W. W. Yang, D. H. He, Chin. J. Catal., 2014, 35, 1520-1528.
-
[15] X. H. Wang, Y. Guo, G. Z. Lu, Y. Hu, L. Z. Jiang, Y. L. Guo, Z. G. Zhang, Catal. Today, 2007, 126, 369-374.
-
[16] M. Jorgensen, H. Gronbeck, ACS Catal., 2016, 6, 6730-6738.
-
[17] Y. N. Sun, J. W. Liu, J. J. Song, S. S. Huang, N. T. Yang, J. Zhang, Y. H. Sun, Y. Zhu, ChemCatChem, 2016, 8, 540-545.
-
[18] Z. X. Wu, J. G. Deng, Y. X. Liu, S. H. Xie, Y. Jiang, X. T. Zhao, J. Yang, H. Arandiyan, G. S. Guo, H. X. Dai, J. Catal., 2015, 332, 13-24.
-
[19] G. Ercolino, G. Grzybek, P. Stelmachowski, S. Specchia, A. Kotarba, V. Specchia, Catal. Today, 2015, 257, 66-71.
-
[20] Z. H. Li, G. B. Hoflund, React. Kinet. Catal. Lett., 1999, 66, 367-374.
-
[21] L. H. Hu, Q. Peng, Y. D. Li, ChemCatChem, 2011, 3, 868-874.
-
[22] Y. H. Zhao, S. K. Li, Y. H. Sun, J. Phys. Chem. C, 2013, 117, 24920-24931.
-
[23] Y. H. Zhao, S. G. Li, Y. H. Sun, Chin. J. Catal., 2013, 34, 911-922.
-
[24] L. H. Hu, Q. Peng, Y. D. Li, J. Am. Chem. Soc., 2008, 130, 16136-16137.
-
[25] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
-
[26] P. E. Blöchl, Phys. Rev., B, 1994, 50, 17953-17979.
-
[27] G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
-
[28] G. Kresse, J. Furthmiiller, Comp. Mater. Sci., 1996, 6, 15-50.
-
[29] G. Kresse, J. Furthmiiller, Phys. Rev. B, 1996, 54, 11169-11186.
-
[30] V. I. Anisimovy, F. Aryasetiawanz, A. I. Lichtenstein, J. Phys.-Condes. Matter, 1997, 9, 767-808.
-
[31] K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A. K. McMahan, R. T. Scalettar, T. Pruschke, V. I. Anisimov, D. Vollhardt, Phys. Status Solidi B, 2006, 243, 2599-2631.
-
[32] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C. A. Marianetti, Rev. Mod. Phys., 2006, 78, 865-951.
-
[33] J. Kunes, I. Leonov, M. Kollar, K. Byczuk, V. I. Anisimov, D. Vollhardt, Eur. Phys. J. Special Topics, 2010, 180, 5-28.
-
[34] H. Jiang, Int. J. Quantum. Chem., 2015, 115, 722-730.
-
[35] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B, 1998, 57, 1505-1509.
-
[36] V. Singh, M. Kosa, K. Majhi, D. T. Major, J. Chem. Theory Comput., 2015, 11, 64-72.
-
[37] D. E. Jiang, S. Dai, Phys. Chem. Chem. Phys., 2011, 13, 978-984.
-
[38] X. L. Xu, Z. H. Chen, Y. Li, W. K. Chen, J. Q. Li, Surf. Sci., 2009, 603, 653-658.
-
[39] W. L. Roth, J. Phys. Chem. Solids, 1964, 25, 1-10.
-
[40] P. S. Patil, L. D. Kadam, C. D. Lokhande, Thin Solid Films, 1996, 272, 29-32
-
[41] C. S. Cheng, M. Serizawa, H. Sakata, T. Hirayama, Mater. Chem. Phys., 1998, 53, 225-230.
-
[42] D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Chem. Mater, 2001, 13, 588-593.
-
[43] A. Gulino, I. Fragala, Inorg. Chim. Acta, 2005, 358, 4466-4472.
-
[44] G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys., 2000, 113, 9901-9904.
-
[45] G. Henkelman, H. Jónsson, J. Chem. Phys., 2000, 113, 9978-9985.
-
[46] W. D. Hu, J. G. Lan, Y. Guo, X. M. Cao, P. Hu, ACS Catal., 2016, 6, 5508-5519.
-
[47] K. Reuter, M. Scheffler, Phys. Rev. B, 2001, 65, 035406/1-035406/11.
-
[48] F. Zasada, W. Piskorz, J. Janas, J. Gryboś, P. Indyka, Z. Sojka, ACS Catal., 2015, 5, 6879-6892.
-
[49] P. Herrmann, G. Heimel, Adv. Mater., 2015, 27, 255-260.
-
[50] T. N. M. Le, B. Liu, L. K. Huynh, J. Comput. Chem., 2014, 35, 1890-1899.
-
-

计量
- PDF下载量: 13
- 文章访问数: 801
- HTML全文浏览量: 119