Au/CeO2催化剂上CO2选择加氢为CO反应及其中间物种研究

朱晓兵 曲新 李小松 刘景林 刘剑豪 朱斌 石川

引用本文: 朱晓兵,  曲新,  李小松,  刘景林,  刘剑豪,  朱斌,  石川. Au/CeO2催化剂上CO2选择加氢为CO反应及其中间物种研究[J]. 催化学报, 2016, 37(12): 2053-2058. doi: 10.1016/S1872-2067(16)62538-X shu
Citation:  Xiaobing Zhu,  Xin Qu,  Xiaosong Li,  Jinglin Liu,  Jianhao Liu,  Bin Zhu,  Chuan Shi. Selective reduction of carbon dioxide to carbon monoxide over Au/CeO2 catalyst and identification of reaction intermediate[J]. Chinese Journal of Catalysis, 2016, 37(12): 2053-2058. doi: 10.1016/S1872-2067(16)62538-X shu

Au/CeO2催化剂上CO2选择加氢为CO反应及其中间物种研究

  • 基金项目:

    国家自然科学基金(11475041,11175036,21373037),中央高校基本科研业务费(DUT16QY49).

摘要: CO2的化学转化具有环境及科学双重研究意义.CO2具有很高的化学稳定性,加氢还原是一种有效的转化途径.其中将CO2选择性还原为CO,即逆水汽变换(RWGS)反应(CO2+H2→ CO+H2O),具有重要的理论意义和应用价值:(1)CO作为合成气的重要原料,可以通过F-T合成生产更有价值的液体燃料;(2)H2可通过可再生能源电解水制取,实现了全过程的零排放碳循环利用.
从热力学角度分析,RWGS反应是一个吸热反应,高温有利于平衡转化率的提高.从动力学角度,一个对正反应有活性的催化剂可同时催化逆反应进行.可还原性载体负载贵金属催化剂,如Pt/CeO2,Au/FeOx,Au/CeO2等,具有很好的低温WGS催化活性,但它们在RWGS反应上的研究较少.我们制备了CeO2负载纳米Au催化剂(HRTEM表征结果表明金高度分散于CeO2载体表面,粒径为4-5 nm),其在常压CO2加氢还原为CO反应中表现出优异的低温活性,分别在450℃,CO2/H2=1,WHSV=12000 mL/(h·g),及400℃,H2/CO2=1,WHSV=6000 mL/(h·g)条件下,CO2转化率接近平衡转化率,且CO的选择性为100%.随着H2/CO2比例增加,CO2转化率明显提高,且维持H2/CO2为1的化学计量比反应.通过原位漫反射红外光谱与质谱相结合的技术,研究了Au/CeO2催化剂上的RWGS反应路径:Au/CeO2催化剂表面形成了甲酸盐中间物种,它的消耗伴随着CO和H2O产物的生成.说明Au/CeO2催化剂遵循中间体机理,这应该是其具有优异低温RWGS反应性能的微观机制.

English

    1. [1] M. D. Krcha, K. M. Dooley, M. J. Janik, J. Catal., 2015, 330, 167-176.

    2. [2] R. D. Richardson, E. J. Holland, B. K. Carpenter, Nat. Chem., 2011, 3, 301-303.

    3. [3] G. Yin, M. Nishikawa, Y. Nosaka, N. Srinivasan, D. Atarashi, E. Sakai, M. Miyauchi, ACS Nano, 2015, 9, 2111-2119.

    4. [4] Q. Shen, Z. F. Chen, X. F. Huang, M. C. Liu, G. H. Zhao, Environ. Sci. Technol., 2015, 49, 5828-5835.

    5. [5] S. Gao, Y. Lin, X. C. Jiao, Y. F. Sun, Q. Q. Luo, W. H. Zhang, D. Q. Li, J. L. Yang, Y. Xie, Nature, 2016, 529, 68-71.

    6. [6] S. Lin, C. S. Diercks, Y. B. Zhang, N. Kornienko, E. M. Nichols, Y. B. Zhao, A. R. Paris, D. Kim, P. D. Yang, O. M. Yaghi, C. J. Chang, Science, 2015, 349, 1208-1213.

    7. [7] W. L. Zhu, R. Michalsky, Ö. Metin, H. H. Lü, S. J. Guo, C. J. Wright, X. L. Sun, A. A. Peterson, S. H. Sun, J. Am. Chem. Soc., 2013, 135, 16833-16836.

    8. [8] R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo, M. T. M. Koper, J. Phys. Chem. Lett., 2015, 6, 4073-4082.

    9. [9] F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjaer, J. S. Hummelshøj, S. Dahl, I. Chorkendorff, J. K. Nørskov, Nat. Chem., 2014, 6, 320-324.

    10. [10] A. A. Upadhye, I. Ro, X. Zeng, H. J. Kim, I. Tejedor, M. A. Anderson, J. A. Dumesic, G. W. Huber, Catal. Sci. Technol., 2015, 5, 2590-2601.

    11. [11] L. C. Wang, M. Tahvildar Khazaneh, D. Widmann, R. J. Behm, J. Catal., 2013, 302, 20-30.

    12. [12] G. Centi, S. Perathoner, Cataly. Today, 2009, 148, 191-205.

    13. [13] Y. W. Li, S. H. Chan, Q. Sun, Nanoscale, 2015, 7, 8663-8683.

    14. [14] X. D. Xu, J. A. Moulijin, Energy Fuel., 1996, 10, 305-325.

    15. [15] W. Wang, S. P. Wang, X. B. Ma, J. L. Gong, Chem. Soc. Rev., 2011, 40, 3703-3727.

    16. [16] M. Ojeda, R. Nabar, A. U. Nilekar, A. Ishikawa, M. Mavrikakis, E. Iglesia, J. Catal., 2010, 272, 287-297.

    17. [17] J. B. Hansen, P. E. H. Nielsen, in:G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp eds., Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim, 2008, 2905-2920.

    18. [18] A. Faur Ghenciu, Curr. Opin. Solid State Mater. Sci., 2002, 6, 389-399.

    19. [19] Y. Tanaka, T. Utaka, R. Kikuchi, K. Sasaki, K. Eguchi, Appl. Catal. A, 2003, 238, 11-18.

    20. [20] Y. Li, Q. Fu, M. Flytzani-Stephanopoulos, Appl. Catal. B, 2000, 27, 179-191.

    21. [21] A. Stephen, K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed., 2006, 45, 7896-7936.

    22. [22] S. Zhang, X. S. Li, B. B. Chen, X. B. Zhu, C. Shi, A. M. Zhu, ACS Catal., 2014, 4, 3481-3489.

    23. [23] D. Andreeva, Gold Bull., 2002, 35, 82-88.

    24. [24] R. Si, M. Flytzani-Stephanopoulos, Angew. Chem. Int. Ed., 2008, 47, 2884-2887.

    25. [25] M. Tóth, J. Kiss, A. Oszkó, G. Pótári, B. László, A. Erdőhelyi, Top. Catal., 2012, 55, 747-756.

    26. [26] H. Sakurai, M. Haruta, Appl. Catal. A, 1995, 127, 93-105.

    27. [27] L. H. Wang, S. X. Zhang, Y. Liu, J. Rare Earths, 2008, 26, 66-70.

    28. [28] L. G. Appel, J. G. Eon, M. Schmal, Catal. Lett., 1998, 56, 199-202.

    29. [29] J. A. Rodriguez, S. Ma, P. Liu, J. Hrbek, J. Evans, M. Pérez, Science, 2007, 318, 1757-1760.

    30. [30] R. Burch, Phys. Chem. Chem. Phys., 2006, 8, 5483-5500.

    31. [31] L. Delannoy, N. El Hassan, A. Musi, N. N. Le To, J. M. Krafft, C. Louis, J. Phys. Chem. B., 2006, 110, 22471-22478.

    32. [32] B. Zhu, X. S. Li, C. Shi, J. L. Liu, T. L. Zhao, A. M. Zhu, Int. J. Hydrogen Energy, 2012, 37, 4945-4954.

    33. [33] X. Y. Liu, P. J. Guo, B. Wang, Z. Jiang, Y. Pei, K. N. Fan, M. H. Qiao, J. Catal., 2013, 300, 152-162.

    34. [34] J. Y. Ye, Q. F. Ge, C. J. Liu, Chem. Eng. Sci., 2015, 135, 193-201.

    35. [35] B. B. Chen, C. Shi, M. Crocker, Y. Wang, A. M. Zhu, Appl. Catal. B, 2013, 132-133, 245-255.

    36. [36] Y. Denkwitz, A. Karpenko, V. Plzak, R. Leppelt, B. Schumacher, R. J. Behm, J. Catal., 2007, 246, 74-90.

    37. [37] F. Bozon-Verduraz, A. Bensalem, J. Chem. Soc. Faraday Trans., 1994, 90, 653-657.

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  920
  • HTML全文浏览量:  71
文章相关
  • 收稿日期:  2016-08-23
  • 修回日期:  2016-09-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章