Citation:
Shayan Miar Alipour. Recent advances in naphtha catalytic cracking by nano ZSM-5: A review[J]. Chinese Journal of Catalysis,
;2016, 37(5): 671-680.
doi:
10.1016/S1872-2067(15)61091-9
-
This review discussed the use of nano ZSM-5 in naphtha catalytic cracking. The impact of nano ZSM-5 on product selectivity, reaction conversion and catalyst lifetime were compared with micro-sized ZSM-5. The application of nano ZSM-5 not only increased the catalyst lifetime, but also gave more stability for light olefins selectivity. The effects of the reaction parameters of temperature and feedstock on the performance of nano ZSM-5 were investigated, and showed that high temperature and linear alkanes as feedstock improved light olefin selectivity and conversion.
-
Keywords:
- Nano ZSM-5,
- Crystal size,
- Naphtha cracking,
- Light olefins,
- Reaction parameters
-
-
-
[1]
[1] O. Bortnovsky, P. Sazama, B. Wichterlova, Appl. Catal. A, 2005, 287, 203-213.
-
[2]
[2] C. S. Mei, P. Y. Wen, Z. C. Liu, H. X. Liu, Y. D. Wang, W. M. Yang, Z. K. Xie, W. M. Hua, Z. Gao, J. Catal., 2008, 258, 243-249.
-
[3]
[3] J. L. Wan, Y. X. Wei, Z. M. Liu, B. Li, Y. Qi, M. Z. Li, P. Xie, S. H. Meng, Y. L. He, F. X. Chang, Catal. Lett., 2008, 124, 150-156.
-
[4]
[4] M. A. Bari Siddiqui, A. M. Aitani, M. R. Saeed, S. Al-Khattaf, Top. Catal., 2010, 53, 1387-1393.
-
[5]
[5] J. S. Jung, J. W. Park, G. Seo, Appl. Catal. A, 2005, 288, 149-157.
-
[6]
[6] T. Komatsu, H. Ishihara, Y. Fukui, T. Yashima, Appl. Catal. A, 2001, 214, 103-109.
-
[7]
[7] J. S. Plotkin, Catal. Today, 2005, 106, 10-14.
-
[8]
[8] Y. Yoshimura, N. Kijima, T. Hayakawa, K. Murata, K. Suzuki, F. Mizukami, K. Matano, T. Konishi, T. Oikawa, M. Saito, T. Shiojima, K. Shiozawa, K. Wakui, G. Sawada, K. Sato, S. Matsuo, N. Yamaoka, Catal. Surv. Jpn., 2000, 4, 157-167.
-
[9]
[9] D. Liu, W. C. Choi, N. Y. Kang, Y. J. Lee, H. S. Park, C. H. Shin, Y. K. Park, Catal. Today, 2014, 226, 52-66.
-
[10]
[10] T. Ren, M. Patel, K. Blok, Energy, 2006, 31, 425-451.
-
[11]
[11] Y. Wei, Z. Liu, G. Wang, Y. Qi, L. Xu, P. Xie, Y. He, Stud. Surf. Sci. Catal., 2005, 158, 1223-1230.
-
[12]
[12] Y. Wei, F. Chang, Y. He, S. Meng, Y. Yang, Y. Qi, Z. Liu, Recent Prog. Mesostruct. Mater., 2007, 539-542.
-
[13]
[13] S. Y. Han, C. W. Lee, J. R. Kim, N. S. Han, W. C. Choi, C. H. Shin, Y. K. Park, Stud. Surf. Sci. Catal., 2004, 153, 157-160.
-
[14]
[14] H. Krannila, W. O. Haag, B. C. Gates, J. Catal., 1992, 135, 115-124.
-
[15]
[15] S. M. Babitz, B. A. Williams, J. T. Miller, R. Q. Snurr, W. O. Haag, H. H. Kung, Appl. Catal. A, 1999, 179, 71-86.
-
[16]
[16] A. Corma, A. V. Orchillès, Microporous Mesoporous Mater., 2000, 35, 21-30.
-
[17]
[17] N. Katada, Y. Kageyama, K. Takahara, T. Kanai, H. A. Begum, M. Niwa, J. Mol. Catal. A, 2004, 211, 119-130.
-
[18]
[18] H. Mochizuki, T. Yokoi, H. Imai, R. Watanabe, S. Namba, J. N. Kondo, T. Tatsumi, Microporous Mesoporous Mater., 2011, 145, 165-171.
-
[19]
[19] W. O. Haag, R. M. Lago, P. B. Weisz, Faraday Discuss. Chem. Soc., 1981, 72, 317-330.
-
[20]
[20] G. Wang, C. M. Xu, S. S. Gao, Fuel Process. Technol., 2008, 89, 864-873.
-
[21]
[21] N. Rane, M. Kersbulck, R. A. van Santen, E. J. M. Hensen, Microporous Mesoporous Mater., 2008, 110, 279-291.
-
[22]
[22] M. A. den Hollander, M. Wissink, M. Makkee, J. A. Moulijn, Appl. Catal. A, 2002, 223, 85-102.
-
[23]
[23] J. Biswas, I. E. Maxwell, Appl. Catal., 1990, 63, 197-258.
-
[24]
[24] G. Y. Jiang, L. Zhang, Z. Zhao, X. Y. Zhou, A. J. Duan, C. M. Xu, J. S. Gao, Appl. Catal. A, 2008, 340, 176-182.
-
[25]
[25] X. H. Meng, J. S. Gao, L. Li, C. M. Xu, Petrol. Sci. Technol., 2004, 22, 1327-1341.
-
[26]
[26] W. O. Haag, R. M. Lago, Proceedings of the 8th International Congress on Catalysis, Berlin, 1984, 2.
-
[27]
[27] J. S. Buchanan, J. G. Santiesteban, W. O. Haag, J. Catal., 1996, 158, 279-287.
-
[28]
[28] W. O. Haag, R. M. Dessau, R. M. Lago, Stud. Surf. Sci. Catal., 1991, 60, 255-265.
-
[29]
[29] S. Kotrel, M. P. Rosynek, J. H. Lunsford, J. Catal., 2000, 191, 55-61.
-
[30]
[30] A. Corma, J. Mengual, P. J. Miguel, Appl. Catal. A, 2012, 417-418, 220-235.
-
[31]
[31] M. Guisnet, P. Magnoux, Appl. Catal., 1989, 54, 1-27.
-
[32]
[32] K. Wakui, K. Satoh, G. Sawada, K. Shiozawa, K. Matano, K. Suzuki, T. Hayakawa, Y. Yoshimura, K. Murata, F. Mizukami, Catal. Lett., 2002, 84, 259-264.
-
[33]
[33] A. F. H. Wielers, M. Waarkamp, M. F. M. Post, J. Catal., 1991, 127, 51-66.
-
[34]
[34] S. Jolly, J. Jaussey, M. M. Bettahar, J. C. Lavalley, E. Benazzi, Appl. Catal. A, 1997, 156, 71-96.
-
[35]
[35] G. D. Stefanidis, A. N. Munoz, G. S. J. Sturm, A. Stankiewicz, Rev. Chem. Eng., 2014, 30, 233-259.
-
[36]
[36] E. G. Derouane, S. Determmerie, Z. Gabelica, N. Blom, Appl. Catal., 1981, 1, 201-224.
-
[37]
[37] T. Inui, G. Takeuchi, Y. Takegnami, Appl. Catal., 1982, 4, 211-221.
-
[38]
[38] C. Naccache, Y. B. Tarrit, in: F. R. Ribeiro, A. E. Rodrigues, L. D. Rollman, C. Naccoche eds., Zeolite: Science and Technology, Nijhoff, The Hague, 1984.
-
[39]
[39] N. Kumar, L. E. Lindfors, R. Byggningsbacka, Appl. Catal. A, 1996, 139, 189-199.
-
[40]
[40] R. Byggningsbacka, N. Kumar, L. E. Lindfors, J. Catal., 1998, 178, 611-620.
-
[41]
[41] U. Thubsuang, H. Ishida, S. Wongkasemjit, T. Chaisuwan, Microporous Mesoporous Mater., 2012, 156, 7-15.
-
[42]
[42] F. Mohammadparast, R. Halladj, S. Askari, Chem. Eng. Commun., 2014, 202, 542-556.
-
[43]
[43] S. MiarAlipour, R. Halladj, S. Askari, E. BagheriSereshki, J. Porous Mater., 2016, 23, 145-155.
-
[44]
[44] H. Konno, T. Okamura, T. Kawahara, Y. Nakasaka, T. Tago, T. Masuda, Chem. Eng. J., 2012, 207-208, 490-496.
-
[45]
[45] H. Konno, R. Ohnaka, J. Nishimura, T. Tago, Y. Nakasaka, T. Masuda, Catal. Sci. Technol., 2014, 4, 4265-4273.
-
[46]
[46] L. Tosheva, V. P. Valtchev, Chem. Mater., 2005, 7, 2494-2513.
-
[47]
[47] S. C. Larsen, J. Phys. Chem. C, 2007, 111, 18464-18474.
-
[48]
[48] S. G. Bao, G. Z. Liu, X. W. Zhang, L. Wang, Z. T. Mi, Ind. Eng. Chem. Res., 2010, 49, 3972-3975.
-
[49]
[49] T. Wakihara, K. Sato, S. Inagaki, J. Tatami, K. Komeya, T. Meguro, Y. Kubota, ACS Appl. Mater. Interfaces, 2010, 2, 2715-2718.
-
[50]
[50] T. Tago, H. Konno, M. Sakamoto, Y. Nakasaka, T. Masuda, Appl. Catal. A, 2011, 403, 183-191.
-
[51]
[51] A. A. Rownaghi, F. Rezaei, J. Hedlund, Chem. Eng. J., 2012, 191, 528-533.
-
[52]
[52] H. Konno, T. Tago, Y. Nakasaka, R. Ohnaka, J. Nishimura, T. Masuda, Microporous Mesoporous Mater., 2013, 175, 25-33.
-
[53]
[53] T. Tago, M. Nishi, Y. Kouno, T. Masuda, Chem. Lett., 2004, 33, 1040-1041.
-
[54]
[54] T. Tago, K. Iwakai, M. Nishi, T. Masuda, J. Nanosci. Nanotechnol., 2009, 9, 612-617.
-
[55]
[55] T. Tago, D. Aoki, K. Iwakai, T. Masuda, Top. Catal., 2009, 52, 865-871.
-
[56]
[56] T. Tago, M. Sakamoto, K. Iwakai, H. Nishihara, S. R. Mukai, T. Tanaka, T. Masuda, J. Chem. Eng. Jpn., 2009, 42, S162-S167.
-
[57]
[57] K. Iwakai, T. Tago, H. Konno, Y. Nakasaka, T. Masuda, Microporous Mesoporous Mater., 2011, 141, 167-174.
-
[58]
[58] T. Tago, Y. Nakasaka, T. Masuda, J. Jpn. Pet. Inst., 2012, 55, 149-159.
-
[59]
[59] T. Tago, H. Konno, Y. Nakasaka, T. Masuda, Catal. Surv. Asia, 2012, 16, 148-163.
-
[60]
[60] H. Konno, T. Okamura, Y. Nakasaka, T. Tago, T. Masuda, J. Jpn. Pet. Inst., 2012, 55, 267-274.
-
[61]
[61] H. S. Cerqueira, P. C. Mihindou-Koumba, P. Magnoux, M. Guisnet, Ind. Eng. Chem. Res., 2001, 40, 1032-1041.
-
[62]
[62] A. Slagtern, I. M. Dahl, K. J. Jens, T. Myrstad, Appl. Catal. A, 2010, 375, 213-221.
-
[63]
[63] R. Javaid, K. Urata, S. Furukawa, T. Komatsu, Appl. Catal. A, 2015, 491, 100-105.
-
[64]
[64] K. Urata, S. Furukawa, T. Komatsu, Appl. Catal. A, 2014, 475, 335-340.
-
[65]
[65] Y. Y. Hu, C. Liu, Y. H. Zhang, N. Ren, Y. Tang, Microporous Mesoporous Mater., 2009, 119, 306-314.
-
[66]
[66] M. Khatamian, M. Irani, J. Iran Chem. Soc., 2009, 6, 187-194.
-
[67]
[67] R. Van Grieken, J. L. Sotelo, J. M. Menendez, J. A. Melero. Microporous Mesoporous Mater., 2000, 39, 135-147.
-
[68]
[68] R. Kore, R. Srivastava, B. Satpati, Chem. Eur. J., 2014, 20, 11511-11521.
-
[1]
-
-
-
[1]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[2]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[3]
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
-
[4]
Shanyuan Bi , Jin Zhang , Dengchao Peng , Danhong Cheng , Jianping Zhang , Lupeng Han , Dengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295
-
[5]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[6]
Zhenxing Liu , Jiaen Hu , Zishi Cheng , Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107
-
[7]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[8]
Zihao Guo , Shichen Ma , Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038
-
[9]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[10]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[11]
Liuchuang Zhao , Wenbo Chen , Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079
-
[12]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[13]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[14]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[15]
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095
-
[16]
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
-
[17]
Xunzhang Fan , Yuanjin Zhao , Shufang Luo , Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065
-
[18]
Lilong Gao , Yuhao Zhai , Dongdong Zhang , Linjun Huang , Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143
-
[19]
Jiamin Li , Wenyue Zhong , Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040
-
[20]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(537)
- HTML views(81)