Citation: Shayan Miar Alipour. Recent advances in naphtha catalytic cracking by nano ZSM-5: A review[J]. Chinese Journal of Catalysis, ;2016, 37(5): 671-680. doi: 10.1016/S1872-2067(15)61091-9 shu

Recent advances in naphtha catalytic cracking by nano ZSM-5: A review

  • Corresponding author: Shayan Miar Alipour, 
  • Received Date: 4 February 2016
    Available Online: 31 March 2016

  • This review discussed the use of nano ZSM-5 in naphtha catalytic cracking. The impact of nano ZSM-5 on product selectivity, reaction conversion and catalyst lifetime were compared with micro-sized ZSM-5. The application of nano ZSM-5 not only increased the catalyst lifetime, but also gave more stability for light olefins selectivity. The effects of the reaction parameters of temperature and feedstock on the performance of nano ZSM-5 were investigated, and showed that high temperature and linear alkanes as feedstock improved light olefin selectivity and conversion.
  • 加载中
    1. [1]

      [1] O. Bortnovsky, P. Sazama, B. Wichterlova, Appl. Catal. A, 2005, 287, 203-213.

    2. [2]

      [2] C. S. Mei, P. Y. Wen, Z. C. Liu, H. X. Liu, Y. D. Wang, W. M. Yang, Z. K. Xie, W. M. Hua, Z. Gao, J. Catal., 2008, 258, 243-249.

    3. [3]

      [3] J. L. Wan, Y. X. Wei, Z. M. Liu, B. Li, Y. Qi, M. Z. Li, P. Xie, S. H. Meng, Y. L. He, F. X. Chang, Catal. Lett., 2008, 124, 150-156.

    4. [4]

      [4] M. A. Bari Siddiqui, A. M. Aitani, M. R. Saeed, S. Al-Khattaf, Top. Catal., 2010, 53, 1387-1393.

    5. [5]

      [5] J. S. Jung, J. W. Park, G. Seo, Appl. Catal. A, 2005, 288, 149-157.

    6. [6]

      [6] T. Komatsu, H. Ishihara, Y. Fukui, T. Yashima, Appl. Catal. A, 2001, 214, 103-109.

    7. [7]

      [7] J. S. Plotkin, Catal. Today, 2005, 106, 10-14.

    8. [8]

      [8] Y. Yoshimura, N. Kijima, T. Hayakawa, K. Murata, K. Suzuki, F. Mizukami, K. Matano, T. Konishi, T. Oikawa, M. Saito, T. Shiojima, K. Shiozawa, K. Wakui, G. Sawada, K. Sato, S. Matsuo, N. Yamaoka, Catal. Surv. Jpn., 2000, 4, 157-167.

    9. [9]

      [9] D. Liu, W. C. Choi, N. Y. Kang, Y. J. Lee, H. S. Park, C. H. Shin, Y. K. Park, Catal. Today, 2014, 226, 52-66.

    10. [10]

      [10] T. Ren, M. Patel, K. Blok, Energy, 2006, 31, 425-451.

    11. [11]

      [11] Y. Wei, Z. Liu, G. Wang, Y. Qi, L. Xu, P. Xie, Y. He, Stud. Surf. Sci. Catal., 2005, 158, 1223-1230.

    12. [12]

      [12] Y. Wei, F. Chang, Y. He, S. Meng, Y. Yang, Y. Qi, Z. Liu, Recent Prog. Mesostruct. Mater., 2007, 539-542.

    13. [13]

      [13] S. Y. Han, C. W. Lee, J. R. Kim, N. S. Han, W. C. Choi, C. H. Shin, Y. K. Park, Stud. Surf. Sci. Catal., 2004, 153, 157-160.

    14. [14]

      [14] H. Krannila, W. O. Haag, B. C. Gates, J. Catal., 1992, 135, 115-124.

    15. [15]

      [15] S. M. Babitz, B. A. Williams, J. T. Miller, R. Q. Snurr, W. O. Haag, H. H. Kung, Appl. Catal. A, 1999, 179, 71-86.

    16. [16]

      [16] A. Corma, A. V. Orchillès, Microporous Mesoporous Mater., 2000, 35, 21-30.

    17. [17]

      [17] N. Katada, Y. Kageyama, K. Takahara, T. Kanai, H. A. Begum, M. Niwa, J. Mol. Catal. A, 2004, 211, 119-130.

    18. [18]

      [18] H. Mochizuki, T. Yokoi, H. Imai, R. Watanabe, S. Namba, J. N. Kondo, T. Tatsumi, Microporous Mesoporous Mater., 2011, 145, 165-171.

    19. [19]

      [19] W. O. Haag, R. M. Lago, P. B. Weisz, Faraday Discuss. Chem. Soc., 1981, 72, 317-330.

    20. [20]

      [20] G. Wang, C. M. Xu, S. S. Gao, Fuel Process. Technol., 2008, 89, 864-873.

    21. [21]

      [21] N. Rane, M. Kersbulck, R. A. van Santen, E. J. M. Hensen, Microporous Mesoporous Mater., 2008, 110, 279-291.

    22. [22]

      [22] M. A. den Hollander, M. Wissink, M. Makkee, J. A. Moulijn, Appl. Catal. A, 2002, 223, 85-102.

    23. [23]

      [23] J. Biswas, I. E. Maxwell, Appl. Catal., 1990, 63, 197-258.

    24. [24]

      [24] G. Y. Jiang, L. Zhang, Z. Zhao, X. Y. Zhou, A. J. Duan, C. M. Xu, J. S. Gao, Appl. Catal. A, 2008, 340, 176-182.

    25. [25]

      [25] X. H. Meng, J. S. Gao, L. Li, C. M. Xu, Petrol. Sci. Technol., 2004, 22, 1327-1341.

    26. [26]

      [26] W. O. Haag, R. M. Lago, Proceedings of the 8th International Congress on Catalysis, Berlin, 1984, 2.

    27. [27]

      [27] J. S. Buchanan, J. G. Santiesteban, W. O. Haag, J. Catal., 1996, 158, 279-287.

    28. [28]

      [28] W. O. Haag, R. M. Dessau, R. M. Lago, Stud. Surf. Sci. Catal., 1991, 60, 255-265.

    29. [29]

      [29] S. Kotrel, M. P. Rosynek, J. H. Lunsford, J. Catal., 2000, 191, 55-61.

    30. [30]

      [30] A. Corma, J. Mengual, P. J. Miguel, Appl. Catal. A, 2012, 417-418, 220-235.

    31. [31]

      [31] M. Guisnet, P. Magnoux, Appl. Catal., 1989, 54, 1-27.

    32. [32]

      [32] K. Wakui, K. Satoh, G. Sawada, K. Shiozawa, K. Matano, K. Suzuki, T. Hayakawa, Y. Yoshimura, K. Murata, F. Mizukami, Catal. Lett., 2002, 84, 259-264.

    33. [33]

      [33] A. F. H. Wielers, M. Waarkamp, M. F. M. Post, J. Catal., 1991, 127, 51-66.

    34. [34]

      [34] S. Jolly, J. Jaussey, M. M. Bettahar, J. C. Lavalley, E. Benazzi, Appl. Catal. A, 1997, 156, 71-96.

    35. [35]

      [35] G. D. Stefanidis, A. N. Munoz, G. S. J. Sturm, A. Stankiewicz, Rev. Chem. Eng., 2014, 30, 233-259.

    36. [36]

      [36] E. G. Derouane, S. Determmerie, Z. Gabelica, N. Blom, Appl. Catal., 1981, 1, 201-224.

    37. [37]

      [37] T. Inui, G. Takeuchi, Y. Takegnami, Appl. Catal., 1982, 4, 211-221.

    38. [38]

      [38] C. Naccache, Y. B. Tarrit, in: F. R. Ribeiro, A. E. Rodrigues, L. D. Rollman, C. Naccoche eds., Zeolite: Science and Technology, Nijhoff, The Hague, 1984.

    39. [39]

      [39] N. Kumar, L. E. Lindfors, R. Byggningsbacka, Appl. Catal. A, 1996, 139, 189-199.

    40. [40]

      [40] R. Byggningsbacka, N. Kumar, L. E. Lindfors, J. Catal., 1998, 178, 611-620.

    41. [41]

      [41] U. Thubsuang, H. Ishida, S. Wongkasemjit, T. Chaisuwan, Microporous Mesoporous Mater., 2012, 156, 7-15.

    42. [42]

      [42] F. Mohammadparast, R. Halladj, S. Askari, Chem. Eng. Commun., 2014, 202, 542-556.

    43. [43]

      [43] S. MiarAlipour, R. Halladj, S. Askari, E. BagheriSereshki, J. Porous Mater., 2016, 23, 145-155.

    44. [44]

      [44] H. Konno, T. Okamura, T. Kawahara, Y. Nakasaka, T. Tago, T. Masuda, Chem. Eng. J., 2012, 207-208, 490-496.

    45. [45]

      [45] H. Konno, R. Ohnaka, J. Nishimura, T. Tago, Y. Nakasaka, T. Masuda, Catal. Sci. Technol., 2014, 4, 4265-4273.

    46. [46]

      [46] L. Tosheva, V. P. Valtchev, Chem. Mater., 2005, 7, 2494-2513.

    47. [47]

      [47] S. C. Larsen, J. Phys. Chem. C, 2007, 111, 18464-18474.

    48. [48]

      [48] S. G. Bao, G. Z. Liu, X. W. Zhang, L. Wang, Z. T. Mi, Ind. Eng. Chem. Res., 2010, 49, 3972-3975.

    49. [49]

      [49] T. Wakihara, K. Sato, S. Inagaki, J. Tatami, K. Komeya, T. Meguro, Y. Kubota, ACS Appl. Mater. Interfaces, 2010, 2, 2715-2718.

    50. [50]

      [50] T. Tago, H. Konno, M. Sakamoto, Y. Nakasaka, T. Masuda, Appl. Catal. A, 2011, 403, 183-191.

    51. [51]

      [51] A. A. Rownaghi, F. Rezaei, J. Hedlund, Chem. Eng. J., 2012, 191, 528-533.

    52. [52]

      [52] H. Konno, T. Tago, Y. Nakasaka, R. Ohnaka, J. Nishimura, T. Masuda, Microporous Mesoporous Mater., 2013, 175, 25-33.

    53. [53]

      [53] T. Tago, M. Nishi, Y. Kouno, T. Masuda, Chem. Lett., 2004, 33, 1040-1041.

    54. [54]

      [54] T. Tago, K. Iwakai, M. Nishi, T. Masuda, J. Nanosci. Nanotechnol., 2009, 9, 612-617.

    55. [55]

      [55] T. Tago, D. Aoki, K. Iwakai, T. Masuda, Top. Catal., 2009, 52, 865-871.

    56. [56]

      [56] T. Tago, M. Sakamoto, K. Iwakai, H. Nishihara, S. R. Mukai, T. Tanaka, T. Masuda, J. Chem. Eng. Jpn., 2009, 42, S162-S167.

    57. [57]

      [57] K. Iwakai, T. Tago, H. Konno, Y. Nakasaka, T. Masuda, Microporous Mesoporous Mater., 2011, 141, 167-174.

    58. [58]

      [58] T. Tago, Y. Nakasaka, T. Masuda, J. Jpn. Pet. Inst., 2012, 55, 149-159.

    59. [59]

      [59] T. Tago, H. Konno, Y. Nakasaka, T. Masuda, Catal. Surv. Asia, 2012, 16, 148-163.

    60. [60]

      [60] H. Konno, T. Okamura, Y. Nakasaka, T. Tago, T. Masuda, J. Jpn. Pet. Inst., 2012, 55, 267-274.

    61. [61]

      [61] H. S. Cerqueira, P. C. Mihindou-Koumba, P. Magnoux, M. Guisnet, Ind. Eng. Chem. Res., 2001, 40, 1032-1041.

    62. [62]

      [62] A. Slagtern, I. M. Dahl, K. J. Jens, T. Myrstad, Appl. Catal. A, 2010, 375, 213-221.

    63. [63]

      [63] R. Javaid, K. Urata, S. Furukawa, T. Komatsu, Appl. Catal. A, 2015, 491, 100-105.

    64. [64]

      [64] K. Urata, S. Furukawa, T. Komatsu, Appl. Catal. A, 2014, 475, 335-340.

    65. [65]

      [65] Y. Y. Hu, C. Liu, Y. H. Zhang, N. Ren, Y. Tang, Microporous Mesoporous Mater., 2009, 119, 306-314.

    66. [66]

      [66] M. Khatamian, M. Irani, J. Iran Chem. Soc., 2009, 6, 187-194.

    67. [67]

      [67] R. Van Grieken, J. L. Sotelo, J. M. Menendez, J. A. Melero. Microporous Mesoporous Mater., 2000, 39, 135-147.

    68. [68]

      [68] R. Kore, R. Srivastava, B. Satpati, Chem. Eur. J., 2014, 20, 11511-11521.

  • 加载中
    1. [1]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    4. [4]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    5. [5]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    6. [6]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    7. [7]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    8. [8]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    12. [12]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    16. [16]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    17. [17]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    18. [18]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    19. [19]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    20. [20]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

Metrics
  • PDF Downloads(1)
  • Abstract views(537)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return