Citation: Huiran Zhou, Xiaofeng Yang, Aiqin Wang, Shu Miao, Xiaoyan Liu, Xiaoli Pan, Yang Su, Lin Li, Yuan Tan, Tao Zhang. Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation[J]. Chinese Journal of Catalysis, ;2016, 37(5): 692-699. doi: 10.1016/S1872-2067(15)61090-7 shu

Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation

  • Corresponding author: Xiaofeng Yang,  Aiqin Wang, 
  • Received Date: 26 February 2016
    Available Online: 28 March 2016

    Fund Project: 国家自然科学基金(21573232). (21573232)

  • The heterogeneity of active sites is the main obstacle for selectivity control in heterogeneous catalysis. Single atom catalysts (SACs) with homogeneous isolated active sites are highly desired in chemoselective transformations. In this work, a Pd1/ZnO catalyst with single-atom dispersion of Pd active sites was achieved by decreasing the Pd loading and reducing the sample at a relatively low temperature. The Pd1/ZnO SAC exhibited excellent catalytic performance in the chemoselective hydrogenation of acetylene with comparable chemoselectivity to that of PdZn intermetallic catalysts and a greatly enhanced utilization of Pd metal. Such unusual behaviors of the Pd1/ZnO SAC in acetylene semi-hydrogenation were ascribed to the high-valent single Pd active sites, which could promote electrostatic interactions with acetylene but restrain undesired ethylene hydrogenation via the spatial restrictions of σ-chemical bonding toward ethylene.
  • 加载中
    1. [1]

      [1] G. A. Somorjai, J. Y. Park, Angew. Chem. Int. Ed., 2008, 47, 9212-9228.

    2. [2]

      [2] H. S. Wei, X. Wei, X. F. Yang, G. Z. Yin, A. Q. Wang, X. Y. Liu, Y. Q. Huang, T. Zhang, Chin. J. Catal., 2015, 36, 160-167.

    3. [3]

      [3] J. Gao, H. B. Zhao, X. F. Yang, B. E. Koel, S. G. Podkolzin, Angew. Chem. Int. Ed., 2014, 53, 3641-3644.

    4. [4]

      [4] S. R. Zhang, L. Nguyen, J. X. Liang, J. J. Shan, J. Y Liu, A. I. Frenkel, A. Patlolla, W. X. Huang, J. Li, F. Tao, Nat. Commun., 2015, 6, 7938.

    5. [5]

      [5] J. Osswald, R. Giedigkeit, R. E. Jentoft, M. Armbrüster, F. Girgsdies, K. Kovnir, T. Ressler, Y. Grin, R. Schlögl, J. Catal., 2008, 258, 210-218.

    6. [6]

      [6] H. R. Zhou, X. F. Yang, L. Li, X. Y. Liu, Y. Q. Huang, X. L. Pan, A. Q. Wang, J. Li, T. Zhang, ACS Catal., 2016, 6, 1054-1061.

    7. [7]

      [7] A. Borodziński, G. C. Bond, Catal. Rev.-Sci. Eng., 2006, 48, 91-144.

    8. [8]

      [8] A. Borodziński, G. C. Bond, Catal. Rev.-Sci. Eng., 2008, 50, 379-469.

    9. [9]

      [9] S. A. Nikolaev, L. N. Zanaveskin, V. V. Smirnov, V. A. Averyanov, K. L. Zanaveskin, Russ. Chem. Rev., 2009, 78, 231-247.

    10. [10]

      [10] M. Crespo-Quesada, F. Cárdenas-Lizana, A. L. Dessimoz, L. Kiwi-Minsker, ACS Catal., 2012, 2, 1773-1786.

    11. [11]

      [11] M. Armbrüster, M. Behrens, F. Cinquini, K. Föttinger, Y. Grin, A. Haghofer, B. Klötzer, A. Knop-Gericke, H. Lorenz, A. Ota, S. Penner, J. Prinz, C. Rameshan, Z. Révay, D. Rosenthal, G. Rupprechter, P. Sautet, R. Schlögl, L. Shao, L. Szentmiklósi, D. Teschner, D. Torres, R. Wagner, R. Widmer, G. Wowsnick, ChemCatChem, 2012, 4, 1048-1063.

    12. [12]

      [12] N. López, C. Vargas-Fuentes, Chem. Commun., 2012, 48, 1379-1391.

    13. [13]

      [13] J. Lin, A. Q. Wang, B. T. Qiao, X. Y. Liu, X. F. Yang, X. D. Wang, J. X. Liang, J. Li, J. Y. Liu, T. Zhang, J. Am. Chem. Soc., 2013, 135, 15314-15317.

    14. [14]

      [14] B. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, T. Zhang, Nat. Chem., 2011, 3, 634-641.

    15. [15]

      [15] B. T. Qiao, J. Lin, A. Q. Wang, Y. Chen, T. Zhang, J. Y. Liu, Chin. J. Catal., 2015, 36, 1505-1511.

    16. [16]

      [16] X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, T. Zhang, Acc. Chem. Res., 2013, 46, 1740-1748.

    17. [17]

      [17] H. S. Wei, X. Y. Liu, A. Q. Wang, L. L. Zhang, B. T. Qiao, X. F. Yang, Y. Q. Huang, S. Miao, J. Y. Liu, T. Zhang, Nat. Commun., 2014, 5, 5634.

    18. [18]

      [18] Y. Boudeville, F. Figueras, M. Forissier, J. L. Portefaix, J. C. Vedrine, J. Catal., 1979, 58, 52-60.

    19. [19]

      [19] X. Y. Liu, C. Y. Mou, S. Lee, Y. Li, J. Secrest, B. W. L. Jang, J. Catal., 2012, 285, 152-159.

    20. [20]

      [20] G. X. Pei, X. Y. Liu, A. Q. Wang, A. F. Lee, M. A. Isaacs, L. Li, X. L. Pan, X. F. Yang, X. D. Wang, Z. J. Tai, K. Wilson, T. Zhang, ACS Catal., 2015, 5, 3717-3725.

    21. [21]

      [21] C. T. Hong, C. T. Yeh, F. H. Yu, Appl. Catal., 1989, 48, 385-396.

    22. [22]

      [22] M. Armbrüster, M. Behrens, K. Föttinger, M. Friedrich, E. Gaudry, S. K. Matam, H. R. Sharma, Catal. Rev.-Sci. Eng., 2013, 55, 289-367.

    23. [23]

      [23] M. L. Cubeiro, J. L. G. Fierro, J. Catal., 1998, 179, 150-162.

    24. [24]

      [24] Y. H. Chin, R. Dagle, J. L. Hu, A. C. Dohnalkova, Y. Wang, Catal. Today, 2002, 77, 79-88.

    25. [25]

      [25] Y. Uemura, Y. Inada, Y. Niwa, M. Kimura, K. K. Bando, A. Yagishita, Y. Iwasawa, M. Nomura, Phys. Chem. Chem. Phys., 2012, 14, 2152-2158.

    26. [26]

      [26] M. Crespo-Quesada, S. Yoon, M. S. Jin, Y. N. Xia, A. Weidenkaff, L. Kiwi-Minsker, ChemCatChem, 2014, 6, 767-771.

    27. [27]

      [27] I. S. Mashkovsky, G. N. Baeva, A. Y. Stakheev, M. N. Vargaftik, N. Y. Kozitsyna, I. I. Moiseev, Mendeleev Commun., 2014, 24, 355-357.

    28. [28]

      [28] M. W. Tew, H. Emerich, J. A. van Bokhoven, J. Phys. Chem. C, 2011, 115, 8457-8465.

    29. [29]

      [29] A. I. Frenkel, C. W. Hills, R. G. Nuzzo, J. Phys. Chem. B, 2001, 105, 12689-12703.

    30. [30]

      [30] A. Sarkany, Z. Zsoldos, B. Furlong, J. W. Hightower, L. Guczi, J. Catal., 1993, 141, 566-582.

    31. [31]

      [31] L. N. Protasova, E. V. Rebrov, K. L. Choy, S. Y. Pung, V. Engels, M. Cabaj, A. E. H. Wheatley, J. C. Schouten, Catal. Sci. Technol., 2011, 1, 768-777.

    32. [32]

      [32] C. Rameshan, W. Stadlmayr, C. Weilach, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, N. Memmel, D. Zemlyanov, G. Rupprechter, B. Klötzer, Angew. Chem. Int. Ed., 2010, 49, 3224-3227.

    33. [33]

      [33] N. Iwasa, S. Masuda, N. Ogawa, N. Takezawa, Appl. Catal. A, 1995, 125, 145-157.

    34. [34]

      [34] N. Wongwaranon, O. Mekasuwandumrong, P. Praserthdam, J. Panpranot, Catal. Today, 2008, 131, 553-558.

    35. [35]

      [35] Q. W. Zhang, J. Li, X. X. Liu, Q. M. Zhu, Appl. Catal. A, 2000, 197, 221-228.

    36. [36]

      [36] Y. N. Li, B. W. L. Jang, Appl. Catal. A, 2011, 392, 173-179.

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    3. [3]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    4. [4]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    14. [14]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    15. [15]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    16. [16]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    20. [20]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

Metrics
  • PDF Downloads(1)
  • Abstract views(897)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return