Citation: Wei Xue, Hepan Zhao, Jie Yao, Fang Li, Yanji Wang. Esterification of cyclohexene with formic acid over a peanut shell-derived carbon solid acid catalyst[J]. Chinese Journal of Catalysis, ;2016, 37(5): 769-777. doi: 10.1016/S1872-2067(15)61076-2 shu

Esterification of cyclohexene with formic acid over a peanut shell-derived carbon solid acid catalyst

  • Corresponding author: Fang Li,  Yanji Wang, 
  • Received Date: 21 December 2015
    Available Online: 26 February 2016

    Fund Project: 国家自然科学基金(21236001,21176056) (21236001,21176056)河北省高校百名优秀创新人才项目(II)(BR2-208) (II)(BR2-208)河北省自然科学基金(B2015202228). (B2015202228)

  • A carbon solid acid catalyst was prepared by the sulfonation of partially carbonized peanut shell with concentrated H2SO4. The structure and acidity of the catalyst were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and elemental analysis, which showed that it was an amorphous carbon material composed of aromatic carbon sheets in random orientations. Sulfonic acid groups were present on the surface at a density of 0.81 mmol/g. The carbon solid acid catalyst showed better performance than HZSM-5 for the esterification of cyclohexene with formic acid. At a 3:1 molar ratio of formic acid to cyclohexene, catalyst loading of 0.07 g/mL of cyclohexene, and reaction time of 1 h at 413 K, the cyclohexene conversion was 88.4% with 97.3% selectivity to cyclohexyl formate. The carbon solid acid catalyst showed better reusability than HZSM-5 because its large pores were minimally affected by the accumulation of oligomerized cyclohexene, which deactivated HZSM-5. The activity of the carbon solid acid catalyst decreased somewhat in the first two recycles due to the leaching of polycyclic aromatic hydrocarbon containing -SO3H groups and then it remained constant in the following reuse.
  • 加载中
    1. [1]

      [1] M. Hara, T. Yoshida, A. Takagaki, T. Takata, J. N. Kondo, S. Hayashi, K. Domen, Angew. Chem. Int. Ed., 2004, 43, 2955-2958.

    2. [2]

      [2] M. Okamura, A. Takagaki, M. Toda, J. N. Kondo, K. Domen, T. Tatsumi, M. Hara, S. Hayashi, Chem. Mater., 2006, 18, 3039-3045.

    3. [3]

      [3] T. T. Liu, Z. L. Li, W. Li, C. J. Shi, Y. Wang, Bioresour. Technol., 2013, 133, 618-621.

    4. [4]

      [4] L. Geng, G. Yu, Y. Wang, Y. X. Zhu, Appl. Catal. A, 2012, 427-428, 137-144.

    5. [5]

      [5] M. H. Zhang, A. X. Sun, Y. L. Meng, L. T. Wang, H. X. Jiang, G. M. Li, Microporous Mesoporous Mater., 2015, 204, 210-217.

    6. [6]

      [6] C. A. Deshmane, M. W. Wright, A. Lachgar, M. Rohlfing, Z. N. Liu, J. Le, B. E. Hanson, Bioresour. Technol., 2013, 147, 597-604.

    7. [7]

      [7] I. M. Lokman, U. Rashld, Y. H. Taufiq-Yap, Chem. Eng. Technol., 2015, 38, 1837-1844.

    8. [8]

      [8] A. M. Dehkhoda, A. H. West, N. Ellis, Appl. Catal. A, 2010, 382, 197-204.

    9. [9]

      [9] C. X. Wang, F. L. Yuan, L. J. Liu, X. Y. Niu, Y. J. Zhu, ChemPlusChem, 2015, 80, 1657-1665.

    10. [10]

      [10] L. Z. Cai, D. C. Meng, S. Q. Zhan, X. X. Yang, T. P. Liu, H. M. Pu, X. C. Tao, RSC Adv., 2015, 5, 72146-72149.

    11. [11]

      [11] K. Nakajima, M. Hara, S. Hayashi, J. Am. Ceram. Soc., 2007, 90, 3725-3734.

    12. [12]

      [12] J. J. Wang, W. J. Xu, J. W. Ren, X. H. Liu, G. Z. Lu, Y. Q. Wang, Green Chem., 2011, 13, 2678-2681.

    13. [13]

      [13] L. N. Zhou, K. Liu, W. M. Hua, Y. H. Yue, Z. Gao, Chin. J. Catal., 2009, 30, 196-200.

    14. [14]

      [14] M. Kitano, D. Yamaguchi, S. Suganuma, K. Nakajima, H. Kato, S. Hayashi, M. Hara, Langmuir, 2009, 25, 5068-5075.

    15. [15]

      [15] D. Yamaguchi, M. Hara, Solid State Sci., 2010, 12, 1018-1023.

    16. [16]

      [16] S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc., 2008, 130, 12787-12793.

    17. [17]

      [17] S. G. Shen, B. Cai, C. Y. Wang, H. M. Li, G. Dai, H. F. Qin, Appl. Catal. A, 2014, 473, 70-74.

    18. [18]

      [18] A. Zali, K. Ghani, A. Shokrolahi, M. H. Keshavarz, Chin. J. Catal., 2008, 29, 602-606.

    19. [19]

      [19] K. Nakajima, I. Tomita, M. Hara, S. Hayashi, K. Domen, J. N. Kondo, Catal. Today, 2006, 116, 151-156.

    20. [20]

      [20] Y. X. Liu, Y. Y. Fang, X. L. Lu, Z. J. Wei, X. N. Li, Chem. Eng. J., 2013, 229, 105-110.

    21. [21]

      [21] K. Nakajima, M. Hara, ACS Catal., 2012, 2, 1296-1304.

    22. [22]

      [22] W. Q. Zhao, B. L. Yang, C. H. Yi, Z. Lei, J. Xu, Ind. Eng. Chem. Res., 2010, 49, 12399-12404.

    23. [23]

      [23] Y. Wu, B. Li, J. F. Hu, J. N. Chen, X. S. Zheng, L. B. Wen, Petrochem. Technol., 2009, 38, 240-243.

    24. [24]

      [24] D. L. Zeng, S. L. Liu, W. J. Gong, G. H. Wang, J. H. Qiu, H. X. Chen, Appl. Catal. A, 2014, 469, 284-289.

    25. [25]

      [25] G. D. Yadav, P. K. Goel, Green Chem., 2000, 2, 71-77.

    26. [26]

      [26] B. Saha, M. M. Sharma, React. Funct. Polym., 1996, 28, 263-278.

    27. [27]

      [27] H. B. Zhang, W. Tong, W. P. Xin, H. X. Li, Chin. J. Catal., 1995, 16, 387-391.

    28. [28]

      [28] Y. L. Gu, F. Shi, Y. Q. Deng, J. Mol. Catal. A, 2004, 212, 71-75.

    29. [29]

      [29] F. Zhou, J. H. Tang, Z. Y. Fei, X. L. Zhou, X. Chen, M. F. Cui, M. Qiao, J. Porous Mater., 2014, 21, 149-155.

    30. [30]

      [30] F. Steyer, K. Sundmacher, Ind. Eng. Chem. Res., 2007, 46, 1099-1104.

    31. [31]

      [31] S. J. Lou, C. X. Xiao, G. Sun, Y. Kou, Chin. J. Catal., 2013, 34, 251-256.

    32. [32]

      [32] H. Nagahara, M. Ono, M. Konishi, Y. Fukuoka, Appl. Surf. Sci., 1997, 121-122, 448-451.

    33. [33]

      [33] R. Ahamed Imam, H. Freund, R. P. M. Guit, C. Fellay, R. J. Meier, K. Sundmacher, Org. Process. Res. Dev., 2013, 17, 343-358.

    34. [34]

      [34] A. Katariya, H. Freund, K. Sundmacher, Ind. Eng. Chem. Res., 2009, 48, 9534-9545.

    35. [35]

      [35] W. M. Du, W. Xue, F. Li, Y. J. Wang, J. Hebei Univ. Technol., 2012, 41(4), 34-39.

    36. [36]

      [36] L. Geng, Y. Wang, G. Yu, Y. X. Zhu, Catal. Commun., 2011, 13, 26-30.

    37. [37]

      [37] A. C. Ferrari, J. Robertson, Phys. Rev. B, 2000, 61, 14095-14107.

    38. [38]

      [38] X. Y. Liu, M. Huang, H. L. Ma, Z. Q. Zhang, J. M. Gao, Y. L. Zhu, X. J. Han, X. Y. Guo, Molecules, 2010, 15, 7188-7196.

    39. [39]

      [39] L. T. Wang, X. Q. Dong, H. X. Jiang, G. M. Li, M. H. Zhang, Bioresour. Technol., 2014, 158, 392-395.

    40. [40]

      [40] H. Ishida, Catal. Surv. Jpn., 1997, 1, 241-246.

    41. [41]

      [41] X. H. Mo, D. E. López, K. Suwannakarn, Y. J. Liu, E. Lotero, J. G. Goodwin Jr., C. Q. Lu, J. Catal., 2008, 254, 332-338.

  • 加载中
    1. [1]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    2. [2]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    3. [3]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    6. [6]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    7. [7]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    8. [8]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    9. [9]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    10. [10]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    11. [11]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    12. [12]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    13. [13]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    15. [15]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    16. [16]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

Metrics
  • PDF Downloads(0)
  • Abstract views(602)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return