Citation:
Yinghong Zhu, Jianqing Zhang, Ziying Chen, Anlun Zhang, Chunan Ma. Synthesis of nitrocarbazole compounds and their electrocatalytic oxidation of alcohol[J]. Chinese Journal of Catalysis,
;2016, 37(4): 533-538.
doi:
10.1016/S1872-2067(15)61047-6
-
Three compounds with nitrocarbazole frameworks were synthesized and their electrochemical reversibility as organic electrocatalysts was studied by cyclic voltammetry. The electrochemical reversibility and oxidation-reduction potential of the compounds were greatly affected by their substituents. The oxidation-reduction potential of the compound with an electron-donating group was negative, while that of the compound with an electron-withdrawing group on the carbazole framework was positive. The electrocatalytic oxidation activities of the nitrocarbazole compounds were investigated through cyclic voltammetry and controlled potential electrolysis at room temperature. The electrocatalysts showed excellent selectivity for p-methoxybenzyl alcohol, converting it to the corresponding aldehyde through electro-oxidation with just 2.5 mol% of the electrocatalysts presented. The electrocatalysts maintained their excellent electroredox activity following recycling.
-
-
-
[1]
[1] R. A. Sheldon, J. K. Kochi, Metal Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes, Academic Press, New York, NY, 1981, 326-328.
-
[2]
[2] M. Hudlicky, Oxidations in Organic Chemistry (ACS Monograph, No. 186), American Chemical Society, Washington, DC, 1990, 114-127.
-
[3]
[3] C. D. Pina, E. Falletta, M. Rossi, J. Catal, 2008, 260, 384-386.
-
[4]
[4] Y. Hao, S. Wang, Q. Sun, L. Shi, A. H. Lu, Chin. J. Catal., 2015, 36, 612-619.
-
[5]
[5] A. Z. Jia, L. L. Lou, C. Zhang, Y. Q. Zhang, S. X. Liu, J. Mol. Catal. A, 2009, 306, 123-129.
-
[6]
[6] Y. Y. Yu, B. Lu, X. G. Wang, J. X. Zhao, X. Z. Wang, Q. H. Cai, Chem. Eng. J., 2010, 162, 738-742.
-
[7]
[7] Y. L. Yu, B. J. Gao, Y. F. Li, Chin. J. Catal., 2013, 34, 1776-1786.
-
[8]
[8] T. A. D Nguyen, A. M. Wright, J. S. Page, G. Wu, T. W. Hayton, Inorg. Chem., 2014, 53, 11377-11387.
-
[9]
[9] B. A. Frontana-Uribe, R. D. Little, J. G. Ibanez, A. Palma, R. Vasquez-Medrano, Green Chem., 2010, 12, 2099-2119.
-
[10]
[10] H. J. Schäfer, M. Harenbrock, E. Klocke, M. Plate, A. Weiper- Idelmann, Pure Appl. Chem., 2007, 79, 2047-2057.
-
[11]
[11] E. Steckhan, Angew Chem., 1986, 98, 681-699.
-
[12]
[12] M. Platen, E. Steckhan, Chem. Ber., 1984, 117, 1679-1694.
-
[13]
[13] N. T. Zhang, C. C. Zeng, C. M. Lam, R. K. Gbur, R. D. Little, J. Org. Chem., 2013, 78, 2014-2110.
-
[14]
[14] R. Francke, R. D. Little, J. Am. Chem. Soc., 2014, 136, 427-435.
-
[15]
[15] Y. S. Park, S. C. Wang, D. J. Tantillo, R. D. Little, J. Org. Chem., 2007, 72, 4351-4357.
-
[16]
[16] K. Takahashi, T. Furusawa, T. Sawamura, S. Kuribayashi, S. Inagi, T. Fuchigami, Electrochim. Acta, 2012, 77, 47-53.
-
[17]
[17] S. M. Halas, K. Okyne, A. Fry, Electrochim. Acta, 2003, 48, 1837-1844.
-
[18]
[18] R. Wend, E. Steckhan, Electrochim. Acta, 1997, 42, 2027-2039.
-
[19]
[19] G. S. Liou, S. H. Hsiao, N. K. Huang, Y. L. Yang, Macromolecules, 2006, 39, 5337-5346.
-
[20]
[20] S. C. Dong, Z. Li, J. G. Qin, J. Phys. Chem. B, 2008, 113, 434-441.
-
[21]
[21] H. M. Wang, S. H. Hsiao, J. Polym. Sci. Part A, 2014, 52, 272-286.
-
[22]
[22] M. L. Keshtov, Y. A. Udum, L. Toppare, V. S. Kochurov, A. R. Khokhlov, Mater. Chem. Phys., 2013, 139, 936-943.
-
[23]
[23] K. B. Zheng, W. Y. Lin, L. Tan, Org. Biomol. Chem., 2012, 10, 9683-9688.
-
[24]
[24] A. N. Bakiev, E. V. Shklyaeva, I. V. Lunegov, I. G. Mokrushin, G. G. Abashev, Russ. J. Gen. Chem., 2014, 84, 1313-1319.
-
[25]
[25] S. F. Wu, Y. Liu, G. P. Yu, J. G. Guan, C. Y. Pan, Y. Du, X. Xiong, Z. G. Wang, Macromolecules, 2014, 47, 2875-2882.
-
[1]
-
-
-
[1]
Lili Jiang , Shaoyu Zheng , Xuejiao Liu , Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004
-
[2]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[3]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[4]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[5]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[6]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[7]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[8]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[9]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037
-
[10]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[11]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[12]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[13]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[14]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[15]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[16]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[17]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[18]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[19]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[20]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(479)
- HTML views(28)