Citation: Yinghong Zhu, Jianqing Zhang, Ziying Chen, Anlun Zhang, Chunan Ma. Synthesis of nitrocarbazole compounds and their electrocatalytic oxidation of alcohol[J]. Chinese Journal of Catalysis, ;2016, 37(4): 533-538. doi: 10.1016/S1872-2067(15)61047-6 shu

Synthesis of nitrocarbazole compounds and their electrocatalytic oxidation of alcohol

  • Corresponding author: Chunan Ma, 
  • Received Date: 1 December 2015
    Available Online: 27 January 2016

    Fund Project: 973计划前期研究专项(2012CB722604). (2012CB722604)

  • Three compounds with nitrocarbazole frameworks were synthesized and their electrochemical reversibility as organic electrocatalysts was studied by cyclic voltammetry. The electrochemical reversibility and oxidation-reduction potential of the compounds were greatly affected by their substituents. The oxidation-reduction potential of the compound with an electron-donating group was negative, while that of the compound with an electron-withdrawing group on the carbazole framework was positive. The electrocatalytic oxidation activities of the nitrocarbazole compounds were investigated through cyclic voltammetry and controlled potential electrolysis at room temperature. The electrocatalysts showed excellent selectivity for p-methoxybenzyl alcohol, converting it to the corresponding aldehyde through electro-oxidation with just 2.5 mol% of the electrocatalysts presented. The electrocatalysts maintained their excellent electroredox activity following recycling.
  • 加载中
    1. [1]

      [1] R. A. Sheldon, J. K. Kochi, Metal Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes, Academic Press, New York, NY, 1981, 326-328.

    2. [2]

      [2] M. Hudlicky, Oxidations in Organic Chemistry (ACS Monograph, No. 186), American Chemical Society, Washington, DC, 1990, 114-127.

    3. [3]

      [3] C. D. Pina, E. Falletta, M. Rossi, J. Catal, 2008, 260, 384-386.

    4. [4]

      [4] Y. Hao, S. Wang, Q. Sun, L. Shi, A. H. Lu, Chin. J. Catal., 2015, 36, 612-619.

    5. [5]

      [5] A. Z. Jia, L. L. Lou, C. Zhang, Y. Q. Zhang, S. X. Liu, J. Mol. Catal. A, 2009, 306, 123-129.

    6. [6]

      [6] Y. Y. Yu, B. Lu, X. G. Wang, J. X. Zhao, X. Z. Wang, Q. H. Cai, Chem. Eng. J., 2010, 162, 738-742.

    7. [7]

      [7] Y. L. Yu, B. J. Gao, Y. F. Li, Chin. J. Catal., 2013, 34, 1776-1786.

    8. [8]

      [8] T. A. D Nguyen, A. M. Wright, J. S. Page, G. Wu, T. W. Hayton, Inorg. Chem., 2014, 53, 11377-11387.

    9. [9]

      [9] B. A. Frontana-Uribe, R. D. Little, J. G. Ibanez, A. Palma, R. Vasquez-Medrano, Green Chem., 2010, 12, 2099-2119.

    10. [10]

      [10] H. J. Schäfer, M. Harenbrock, E. Klocke, M. Plate, A. Weiper- Idelmann, Pure Appl. Chem., 2007, 79, 2047-2057.

    11. [11]

      [11] E. Steckhan, Angew Chem., 1986, 98, 681-699.

    12. [12]

      [12] M. Platen, E. Steckhan, Chem. Ber., 1984, 117, 1679-1694.

    13. [13]

      [13] N. T. Zhang, C. C. Zeng, C. M. Lam, R. K. Gbur, R. D. Little, J. Org. Chem., 2013, 78, 2014-2110.

    14. [14]

      [14] R. Francke, R. D. Little, J. Am. Chem. Soc., 2014, 136, 427-435.

    15. [15]

      [15] Y. S. Park, S. C. Wang, D. J. Tantillo, R. D. Little, J. Org. Chem., 2007, 72, 4351-4357.

    16. [16]

      [16] K. Takahashi, T. Furusawa, T. Sawamura, S. Kuribayashi, S. Inagi, T. Fuchigami, Electrochim. Acta, 2012, 77, 47-53.

    17. [17]

      [17] S. M. Halas, K. Okyne, A. Fry, Electrochim. Acta, 2003, 48, 1837-1844.

    18. [18]

      [18] R. Wend, E. Steckhan, Electrochim. Acta, 1997, 42, 2027-2039.

    19. [19]

      [19] G. S. Liou, S. H. Hsiao, N. K. Huang, Y. L. Yang, Macromolecules, 2006, 39, 5337-5346.

    20. [20]

      [20] S. C. Dong, Z. Li, J. G. Qin, J. Phys. Chem. B, 2008, 113, 434-441.

    21. [21]

      [21] H. M. Wang, S. H. Hsiao, J. Polym. Sci. Part A, 2014, 52, 272-286.

    22. [22]

      [22] M. L. Keshtov, Y. A. Udum, L. Toppare, V. S. Kochurov, A. R. Khokhlov, Mater. Chem. Phys., 2013, 139, 936-943.

    23. [23]

      [23] K. B. Zheng, W. Y. Lin, L. Tan, Org. Biomol. Chem., 2012, 10, 9683-9688.

    24. [24]

      [24] A. N. Bakiev, E. V. Shklyaeva, I. V. Lunegov, I. G. Mokrushin, G. G. Abashev, Russ. J. Gen. Chem., 2014, 84, 1313-1319.

    25. [25]

      [25] S. F. Wu, Y. Liu, G. P. Yu, J. G. Guan, C. Y. Pan, Y. Du, X. Xiong, Z. G. Wang, Macromolecules, 2014, 47, 2875-2882.

  • 加载中
    1. [1]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    7. [7]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    8. [8]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    9. [9]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    10. [10]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    14. [14]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    18. [18]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    19. [19]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(0)
  • Abstract views(479)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return