Citation:
Ali Benvidi, Shahriar Jahanbani, Bibi-Fatemeh Mirjalili, Reza Zare. Electrocatalytic oxidation of hydrazine on magnetic bar carbon paste electrode modified with benzothiazole and iron oxide nanoparticles: Simultaneous determination of hydrazine and phenol[J]. Chinese Journal of Catalysis,
;2016, 37(4): 549-560.
doi:
10.1016/S1872-2067(15)61046-4
-
A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2-(3,4-dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determination of hydrazine was developed. The DPB was firstly self-assembled on the Fe3O4NPs, and the resulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocatalytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV-visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/ Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1-0.4 µmol/L and 0.7-12.0 µmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phenol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100-470 µmol/L and a detection limit of 24.3 µmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.
-
-
-
[1]
[1] M. Revenga-Parra, E. Lorenzo, F. Pariente, Sens. Actuators B, 2005, 107, 678-687.
-
[2]
[2] E. H. Vernot, J. D. MacEwen, R. H. Bruner, C. C. Haun, E. R. Kinkead, D. E. Prentice, A. Hall 3rd, R. E. Schmidt, R. L. Eason, G. B. Hubbard, Fundam. Appl. Toxicol., 1985, 5, 1050-1064.
-
[3]
[3] J. M. Pingarron, I. O. Hernandez, A. Gonzalez-Cores, P. Yanez- Seudeno, Anal. Chim. Acta, 2001, 439, 281-290.
-
[4]
[4] M. Yang, H. L. Li, Talanta, 2001, 55, 479-484.
-
[5]
[5] P. Ortega-Barrales, A. Molina-Díaz, M. I. Pascual-Reguera, L. F. Capitán-Vallvey, Anal. Chim. Acta, 1997, 353, 115-122.
-
[6]
[6] A. Safavi, M. Tohidi, Anal. Methods, 2012, 4, 2233-2241.
-
[7]
[7] Q. F. Yi, W. Q. Yu, J. Electroanal. Chem., 2009, 633, 159-164.
-
[8]
[8] S. Shukla, S. Chaudhary, A. Umar, G. R. Chaudhary, S. K. Mehta, Sens. Actuators B, 2014, 196, 231-237.
-
[9]
[9] H. I. Seifart, W. L. Gent, D. P. Parkin, P. P. Jaarsveld, P. R. Donald, J. Chromatogr. B, 1995, 674, 269-275.
-
[10]
[10] M. Mori, K. Tanaka, Q. Xu, M. Ikedo, H. Taoda, W. Z. Hu, J. Chromatogr. A, 2004, 1039, 135-139.
-
[11]
[11] A. Safavi, M. A. Karimi, Talanta, 2002, 58, 785-792.
-
[12]
[12] H. Karimi-Maleh, P. Biparva, M. Hatami, Biosens. Bioelectron., 2013, 48, 270-275.
-
[13]
[13] H. Karimi-Maleh, F. Tahernejad-Javazmi, A. A. Ensafi, R. Moradi, S. Mallakpour, H. Beitollahi, Biosens. Bioelectron., 2014, 60, 1-7.
-
[14]
[14] S. M. Golabi, H. R. Zare, J. Electroanal. Chem., 1999, 465, 168-176.
-
[15]
[15] M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig, The Merck Index, An Encyclopedia of Chemicals and Drugs, Merck & Co., 1976.
-
[16]
[16] S. Korkut, B. Keskinler, E. Erhan, Talanta, 2008, 76, 1147-1152.
-
[17]
[17] A. A. Ensafi, E. Heydari-Bafrooei, B. Rezaei, Chin. J. Catal., 2013, 34, 1768-1775.
-
[18]
[18] A. Brega, P. Prandini, C. Amaglio, E. Pafumi, J. Chromatogr. A, 1990, 535, 311-316.
-
[19]
[19] K. D. Khalaf, B. A. Hasan, A. Morales-Rubio, M. de la Guardia, Talanta, 1994, 41, 547-556.
-
[20]
[20] L. Campanella, T. Beone, M. P. Sammartino, M. Tomassetti, Analyst, 1993, 118, 979-986.
-
[21]
[21] H. Karimi-Maleh, M. Moazampour, A. A. Ensafi, S. Mallakpour, M. Hatami, Environ. Sci. Pollut. Res., 2014, 21, 5879-5888.
-
[22]
[22] G. Bayramoğlu, M. Y. Arica, Chem. Eng. J., 2008, 139, 20-28.
-
[23]
[23] X. S. Tang, D. Zhang, T. S. Zhou, D. X. Nie, Q. Y. Yang, L. T. Jin, G. Y. Shi, Anal. Methods, 2011, 3, 2313-2321.
-
[24]
[24] R. S. Sista, A. E. Eckhardt, V. Srinivasan, M. G. Pollack, S. Palanki, V. K. Pamula, Lab Chip, 2008, 8, 2188-2196.
-
[25]
[25] D. F. Cao, P. L. He, N. F. Hu, Analyst, 2003, 128, 1268-1274.
-
[26]
[26] H. Teymourian, A. Salimi, S. Khezrian, Biosens. Bioelectron., 2013, 49, 1-8.
-
[27]
[27] M. Arvand, M. Hassannezhad, Mater. Sci. Eng. C, 2014, 36, 160-167.
-
[28]
[28] E. Paleček, M. Fojta, Talanta, 2007, 74, 276-290.
-
[29]
[29] Y. Q. Zhao, H. Q. Luo, N. B. Li, Sens. Actuators B, 2009, 137, 722-726.
-
[30]
[30] D. Zhu, W. Li, H. M. Wen, J. R. Zhang, J. J. Zhu, Anal. Methods, 2013, 5, 4321-4324.
-
[31]
[31] H. L. Lin, J. M. Yang, J. Y. Liu, Y. F. Huang, J. L. Xiao, X. Zhang, Electrochim. Acta, 2013, 90, 382-392.
-
[32]
[32] S. K. Kim, Y. N. Jeong, M. S. Ahmed, J. M. You, H. C. Choi, S. Jeon, Sens. Actuators B, 2011, 153, 246-251.
-
[33]
[33] A. Benvidi, S. Jahanbani, A. Akbari, H. R. Zare, J. Electroanal. Chem., 2015, 758, 68-77.
-
[34]
[34] J. Wang, A. N. Kawde, Electrochem. Commun., 2002, 4, 349-352.
-
[35]
[35] M. Mazloum-Ardakani, A. Dehghani-Firouzabadi, M. A. Sheikh- Mohseni, A. Benvidi, B. B. F. Mirjalili, R. Zare, Measurement, 2015, 62, 88-96.
-
[36]
[36] A. K. Gupta, M. Gupta, Biomaterials, 2005, 26, 3995-4021.
-
[37]
[37] G. H. Du, Z. L. Liu, X. Xia, Q. Chu, S. M. Zhang, J. Sol-Gel Sci. Technol., 2006, 39, 285-291.
-
[38]
[38] H. L. Zhu, E. Z. Zhu, G. F. Ou, L. H. Gao, J. J. Chen, Nanoscale Res. Lett., 2010, 5, 1755-1761.
-
[39]
[39] I. S. Irgibaeva, D. A. Birimzhanova, N. N. Barashkov, Int. J. Quantum Chem., 2008, 108, 2700-2710.
-
[40]
[40] F. Xiao, C. P. Ruan, L. H. Liu, R. Yan, F. Q. Zhao, B. Z. Zeng, Sens. Actuators B, 2008, 134, 895-901.
-
[41]
[41] A. J. Bard, L. R. Faulkner, Electerochemical Methods: Fundamentals and Applications, 2nd Ed., John wiley, New York, 2001.
-
[42]
[42] K. B. Oldham, J. Electroanal. Chem. Interf. Electrochem., 1979, 105, 373-375.
-
[43]
[43] H. Razmi, A. Azadbakht, M. H. Sadr, Anal. Sci., 2005, 21, 1317-1323.
-
[44]
[44] Z. Galus, Fundamentals of Electerochemical Analysis, Ellis Harwood Press, New York, 1976.
-
[45]
[45] X. Q. Cao, B. C. Wang, Q. Su, J. Electroanal. Chem, 1993, 361, 211-214.
-
[46]
[46] J. Heitbaum, W. Vielstich, Electrochim. Acta, 1973, 18, 967-974.
-
[47]
[47] A. A. Ensafi, M. Lotfi, H. Karimi-Maleh, Chin. J. Catal., 2012, 33, 487-493.
-
[48]
[48] C. Karuppiah, S. Palanisamy, S. M. Chen, S. K. Ramaraj, P. Periakaruppan, Electrochim. Acta, 2014, 139, 157-164.
-
[49]
[49] H. Beitollahi, S. Tajik, H. Karimi-Maleh, R. Hosseinzadeh, Appl. Organomet. Chem., 2013, 27, 444-450.
-
[50]
[50] A. Benvidi, P. Kakoolaki, H. R. Zare, R. Vafazadeh, Electrochim. Acta, 2011, 56, 2045-2050.
-
[51]
[51] ASTM D1385-01, Standard Test Method for Hydrazine in Water, ASTM International, 2001.
-
[52]
[52] J. C. Miller, J. N. Miller, Statistics for Analytical Chemistry, 2nd Ed., John Wiley, New York, 1988.
-
[1]
-
-
-
[1]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[2]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[3]
Yingpeng ZHANG , Xingxing LI , Yunshang YANG , Zhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064
-
[4]
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
-
[5]
Wenjuan Tan , Yong Ye , Xiujuan Sun , Bei Liu , Jiajia Zhou , Hailong Liao , Xiulin Wu , Rui Ding , Enhui Liu , Ping Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054
-
[6]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[7]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[8]
Jianqiao ZHANG , Yang LIU , Yan HE , Yaling ZHOU , Fan YANG , Shihui CHENG , Bin XIA , Zhong WANG , Shijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444
-
[9]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[10]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[11]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[12]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[13]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[14]
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
-
[15]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[16]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[17]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[18]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[19]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[20]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(453)
- HTML views(21)