Citation: Ali Benvidi, Shahriar Jahanbani, Bibi-Fatemeh Mirjalili, Reza Zare. Electrocatalytic oxidation of hydrazine on magnetic bar carbon paste electrode modified with benzothiazole and iron oxide nanoparticles: Simultaneous determination of hydrazine and phenol[J]. Chinese Journal of Catalysis, ;2016, 37(4): 549-560. doi: 10.1016/S1872-2067(15)61046-4 shu

Electrocatalytic oxidation of hydrazine on magnetic bar carbon paste electrode modified with benzothiazole and iron oxide nanoparticles: Simultaneous determination of hydrazine and phenol

  • Corresponding author: Ali Benvidi, 
  • Received Date: 1 November 2015
    Available Online: 16 January 2016

  • A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2-(3,4-dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determination of hydrazine was developed. The DPB was firstly self-assembled on the Fe3O4NPs, and the resulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocatalytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV-visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/ Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1-0.4 µmol/L and 0.7-12.0 µmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phenol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100-470 µmol/L and a detection limit of 24.3 µmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.
  • 加载中
    1. [1]

      [1] M. Revenga-Parra, E. Lorenzo, F. Pariente, Sens. Actuators B, 2005, 107, 678-687.

    2. [2]

      [2] E. H. Vernot, J. D. MacEwen, R. H. Bruner, C. C. Haun, E. R. Kinkead, D. E. Prentice, A. Hall 3rd, R. E. Schmidt, R. L. Eason, G. B. Hubbard, Fundam. Appl. Toxicol., 1985, 5, 1050-1064.

    3. [3]

      [3] J. M. Pingarron, I. O. Hernandez, A. Gonzalez-Cores, P. Yanez- Seudeno, Anal. Chim. Acta, 2001, 439, 281-290.

    4. [4]

      [4] M. Yang, H. L. Li, Talanta, 2001, 55, 479-484.

    5. [5]

      [5] P. Ortega-Barrales, A. Molina-Díaz, M. I. Pascual-Reguera, L. F. Capitán-Vallvey, Anal. Chim. Acta, 1997, 353, 115-122.

    6. [6]

      [6] A. Safavi, M. Tohidi, Anal. Methods, 2012, 4, 2233-2241.

    7. [7]

      [7] Q. F. Yi, W. Q. Yu, J. Electroanal. Chem., 2009, 633, 159-164.

    8. [8]

      [8] S. Shukla, S. Chaudhary, A. Umar, G. R. Chaudhary, S. K. Mehta, Sens. Actuators B, 2014, 196, 231-237.

    9. [9]

      [9] H. I. Seifart, W. L. Gent, D. P. Parkin, P. P. Jaarsveld, P. R. Donald, J. Chromatogr. B, 1995, 674, 269-275.

    10. [10]

      [10] M. Mori, K. Tanaka, Q. Xu, M. Ikedo, H. Taoda, W. Z. Hu, J. Chromatogr. A, 2004, 1039, 135-139.

    11. [11]

      [11] A. Safavi, M. A. Karimi, Talanta, 2002, 58, 785-792.

    12. [12]

      [12] H. Karimi-Maleh, P. Biparva, M. Hatami, Biosens. Bioelectron., 2013, 48, 270-275.

    13. [13]

      [13] H. Karimi-Maleh, F. Tahernejad-Javazmi, A. A. Ensafi, R. Moradi, S. Mallakpour, H. Beitollahi, Biosens. Bioelectron., 2014, 60, 1-7.

    14. [14]

      [14] S. M. Golabi, H. R. Zare, J. Electroanal. Chem., 1999, 465, 168-176.

    15. [15]

      [15] M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig, The Merck Index, An Encyclopedia of Chemicals and Drugs, Merck & Co., 1976.

    16. [16]

      [16] S. Korkut, B. Keskinler, E. Erhan, Talanta, 2008, 76, 1147-1152.

    17. [17]

      [17] A. A. Ensafi, E. Heydari-Bafrooei, B. Rezaei, Chin. J. Catal., 2013, 34, 1768-1775.

    18. [18]

      [18] A. Brega, P. Prandini, C. Amaglio, E. Pafumi, J. Chromatogr. A, 1990, 535, 311-316.

    19. [19]

      [19] K. D. Khalaf, B. A. Hasan, A. Morales-Rubio, M. de la Guardia, Talanta, 1994, 41, 547-556.

    20. [20]

      [20] L. Campanella, T. Beone, M. P. Sammartino, M. Tomassetti, Analyst, 1993, 118, 979-986.

    21. [21]

      [21] H. Karimi-Maleh, M. Moazampour, A. A. Ensafi, S. Mallakpour, M. Hatami, Environ. Sci. Pollut. Res., 2014, 21, 5879-5888.

    22. [22]

      [22] G. Bayramoğlu, M. Y. Arica, Chem. Eng. J., 2008, 139, 20-28.

    23. [23]

      [23] X. S. Tang, D. Zhang, T. S. Zhou, D. X. Nie, Q. Y. Yang, L. T. Jin, G. Y. Shi, Anal. Methods, 2011, 3, 2313-2321.

    24. [24]

      [24] R. S. Sista, A. E. Eckhardt, V. Srinivasan, M. G. Pollack, S. Palanki, V. K. Pamula, Lab Chip, 2008, 8, 2188-2196.

    25. [25]

      [25] D. F. Cao, P. L. He, N. F. Hu, Analyst, 2003, 128, 1268-1274.

    26. [26]

      [26] H. Teymourian, A. Salimi, S. Khezrian, Biosens. Bioelectron., 2013, 49, 1-8.

    27. [27]

      [27] M. Arvand, M. Hassannezhad, Mater. Sci. Eng. C, 2014, 36, 160-167.

    28. [28]

      [28] E. Paleček, M. Fojta, Talanta, 2007, 74, 276-290.

    29. [29]

      [29] Y. Q. Zhao, H. Q. Luo, N. B. Li, Sens. Actuators B, 2009, 137, 722-726.

    30. [30]

      [30] D. Zhu, W. Li, H. M. Wen, J. R. Zhang, J. J. Zhu, Anal. Methods, 2013, 5, 4321-4324.

    31. [31]

      [31] H. L. Lin, J. M. Yang, J. Y. Liu, Y. F. Huang, J. L. Xiao, X. Zhang, Electrochim. Acta, 2013, 90, 382-392.

    32. [32]

      [32] S. K. Kim, Y. N. Jeong, M. S. Ahmed, J. M. You, H. C. Choi, S. Jeon, Sens. Actuators B, 2011, 153, 246-251.

    33. [33]

      [33] A. Benvidi, S. Jahanbani, A. Akbari, H. R. Zare, J. Electroanal. Chem., 2015, 758, 68-77.

    34. [34]

      [34] J. Wang, A. N. Kawde, Electrochem. Commun., 2002, 4, 349-352.

    35. [35]

      [35] M. Mazloum-Ardakani, A. Dehghani-Firouzabadi, M. A. Sheikh- Mohseni, A. Benvidi, B. B. F. Mirjalili, R. Zare, Measurement, 2015, 62, 88-96.

    36. [36]

      [36] A. K. Gupta, M. Gupta, Biomaterials, 2005, 26, 3995-4021.

    37. [37]

      [37] G. H. Du, Z. L. Liu, X. Xia, Q. Chu, S. M. Zhang, J. Sol-Gel Sci. Technol., 2006, 39, 285-291.

    38. [38]

      [38] H. L. Zhu, E. Z. Zhu, G. F. Ou, L. H. Gao, J. J. Chen, Nanoscale Res. Lett., 2010, 5, 1755-1761.

    39. [39]

      [39] I. S. Irgibaeva, D. A. Birimzhanova, N. N. Barashkov, Int. J. Quantum Chem., 2008, 108, 2700-2710.

    40. [40]

      [40] F. Xiao, C. P. Ruan, L. H. Liu, R. Yan, F. Q. Zhao, B. Z. Zeng, Sens. Actuators B, 2008, 134, 895-901.

    41. [41]

      [41] A. J. Bard, L. R. Faulkner, Electerochemical Methods: Fundamentals and Applications, 2nd Ed., John wiley, New York, 2001.

    42. [42]

      [42] K. B. Oldham, J. Electroanal. Chem. Interf. Electrochem., 1979, 105, 373-375.

    43. [43]

      [43] H. Razmi, A. Azadbakht, M. H. Sadr, Anal. Sci., 2005, 21, 1317-1323.

    44. [44]

      [44] Z. Galus, Fundamentals of Electerochemical Analysis, Ellis Harwood Press, New York, 1976.

    45. [45]

      [45] X. Q. Cao, B. C. Wang, Q. Su, J. Electroanal. Chem, 1993, 361, 211-214.

    46. [46]

      [46] J. Heitbaum, W. Vielstich, Electrochim. Acta, 1973, 18, 967-974.

    47. [47]

      [47] A. A. Ensafi, M. Lotfi, H. Karimi-Maleh, Chin. J. Catal., 2012, 33, 487-493.

    48. [48]

      [48] C. Karuppiah, S. Palanisamy, S. M. Chen, S. K. Ramaraj, P. Periakaruppan, Electrochim. Acta, 2014, 139, 157-164.

    49. [49]

      [49] H. Beitollahi, S. Tajik, H. Karimi-Maleh, R. Hosseinzadeh, Appl. Organomet. Chem., 2013, 27, 444-450.

    50. [50]

      [50] A. Benvidi, P. Kakoolaki, H. R. Zare, R. Vafazadeh, Electrochim. Acta, 2011, 56, 2045-2050.

    51. [51]

      [51] ASTM D1385-01, Standard Test Method for Hydrazine in Water, ASTM International, 2001.

    52. [52]

      [52] J. C. Miller, J. N. Miller, Statistics for Analytical Chemistry, 2nd Ed., John Wiley, New York, 1988.

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    3. [3]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    4. [4]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    5. [5]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    8. [8]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    14. [14]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(0)
  • Abstract views(454)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return