Citation: Lina Li, Wenliang Zhu, Lei Shi, Yong Liu, Hongchao Liu, Youming Ni, Shiping Liu, Hui Zhou, Zhongmin Liu. The effect of ethanol on the performance of CrOx/SiO2 catalysts during propane dehydrogenation[J]. Chinese Journal of Catalysis, ;2016, 37(3): 359-366. doi: 10.1016/S1872-2067(15)61042-7 shu

The effect of ethanol on the performance of CrOx/SiO2 catalysts during propane dehydrogenation

  • Corresponding author: Zhongmin Liu, 
  • Received Date: 20 November 2015
    Available Online: 30 December 2015

  • The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2. The catalyst pretreated with ethanol vapor exhibited better catalytic activity than the pristine CrOx/SiO2, generating 41.4% propane conversion and 84.8% propylene selectivity. The various catalyst samples prepared were characterized by X-ray diffraction, transmission electron microscopy, temperature-programmed reduction, X-ray photoelectron spectroscopy and reflectance UV-Vis spectroscopy. The data show that coordinative Cr3+ species represent the active sites during the dehydrogenation of propane and that these species serve as precursors for the generation of Cr3+. Cr3+ is reduced during the reaction, leading to a decrease in catalytic activity. Following ethanol vapor pretreatment, the reduced CrOx in the catalyst is readily re-oxidized to Cr6+ by CO2. The pretreated catalyst thus exhibits high activity during the propane dehydrogenation reaction by maintaining the active Cr3+ states.
  • 加载中
    1. [1]

      [1] M. M. Bettahar, G. Costentin, L. Savary, J. C. Lavalley, Appl. Catal. A, 1996, 145, 1-48.

    2. [2]

      [2] R. Grabowski, Catal. Rev. Sci. Eng., 2006, 48, 199-268.

    3. [3]

      [3] P. R. Pujado, B. V. Vora, Hydrocarbon Process., 1990, 69, 65-70.

    4. [4]

      [4] J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B. M. Weckhuysen, Chem. Rev., 2014, 114, 10613-10653.

    5. [5]

      [5] B. Schimmoeller, Y. J. Jiang, S. E. Pratsinis, A. Baiker, J. Catal., 2010, 274, 64-75.

    6. [6]

      [6] F. Cavani, N. Ballarini, A. Cericola, Catal. Today, 2007, 127, 113-131.

    7. [7]

      [7] E. V. Kondratenko, A. Brückner, J. Catal., 2010, 274, 111-116.

    8. [8]

      [8] T. Kamegawa, J. Morishima, M. Matsuoka, J. M. Thomas, M. Anpo. J. Phys. Chem. C, 2007, 111, 1076-1078.

    9. [9]

      [9] Y. Sakurai, T. Suzaki, N. O. Ikenaga. T. Suzuki, Appl. Catal. A, 2000, 192, 281-288.

    10. [10]

      [10] I. Takahara, W. C. Chang, N. Mimura. M. Saito, Catal. Today, 1998, 45, 55-59.

    11. [11]

      [11] Y. Ohishi, T. Kawabata, T. Shishido, K. Takaki, Q. H. Zhang, Y. Wang, K. Takehira, J. Mol. Catal. A, 2005, 230, 49-58.

    12. [12]

      [12] X. Ge, H. Zou, J. Wang, J. Y. Shen, React. Kinet. Catal. Lett., 2005, 85, 253-260.

    13. [13]

      [13] P. Michorczyk, J. Ogonowski, P. Kuśtrowski and L. Chmielarz, Appl. Catal. A, 2008, 349, 62-69.

    14. [14]

      [14] S. A. Al-Ghamdi, H. I. de Lasa, Fuel, 2014, 128, 120-140.

    15. [15]

      [15] E. V. Kondratenko, M. Yu. Sinev, Appl. Catal. A, 2007, 325, 353-361.

    16. [16]

      [16] B. Y. Jibril, S. Ahmed, Catal. Commun., 2006, 7, 990-996.

    17. [17]

      [17] M. Chen, J. Xu, Y. M. Liu, Y. Cao, H. Y. He, J. H. Zhuang, K. N. Fan, Catal. Lett., 2008, 124, 369-375.

    18. [18]

      [18] Y. J. Ren, F. Zhang, W. M. Hua, Y. H. Yue, Z. Gao, Catal. Today, 2009, 148, 316-322.

    19. [19]

      [19] O. V. Krylov, A. Kh. Mamedov, S. R. Mirzabekova, Ind. Eng. Chem. Res., 1995, 34, 474-482.

    20. [20]

      [20] C. Trionfetti, S. Crapanzano, I. V. Babich, K. Seshan, L. Lefferts, Catal. Today, 2009, 145, 19-26.

    21. [21]

      [21] T. Shishido, K. Shimamura, K. Teramura, T. Tanaka, Catal. Today, 2012, 185, 151-156.

    22. [22]

      [22] R. X. Wu, P. F. Xie, Y. H. Cheng, Y. H. Yue, S. Y. Gu, W. M. Yang, C. X. Miao, W. M. Hua, Z. Gao, Catal. Commun., 2013, 39, 20-23.

    23. [23]

      [23] D. Yun, J. Baek, Y. Choi, W. Kim, H. J. Lee, J. Yi, ChemCatChem, 2012, 4, 1952-1959.

    24. [24]

      [24] E. Heracleous, M. Machli, A. A. Lemonidou and I. A. Vasalos, J. Mol. Catal. A, 2005, 232, 29-39.

    25. [25]

      [25] F. E. Frey, W. F. Huppke, Ind. Eng. Chem., 1932, 25, 54-59.

    26. [26]

      [26] Y. Wang, Y. Ohishi, T. Shishido, Q. H. Zhang, W. Yang, Q. Guo, H. L. Wan, K. Takehira, J. Catal., 2003, 220, 347-357.

    27. [27]

      [27] P. Michorczyk, J. Ogonowski, K. Zeńczak, J. Mol. Catal. A, 2011, 349, 1-12.

    28. [28]

      [28] M. S. Kumar, N. Hammer, M. Ronning, A. Holmen, D. Chen, J. C. Walmsley, G. Öye, J. Catal., 2009, 261, 116-128.

    29. [29]

      [29] J. Baek, H. J. Yun, D. Yun, Y. Choi, J. Yi, ACS Catal., 2012, 2, 1893-1903.

    30. [30]

      [30] F. T. Zangeneh, S. Mehrazma, S. Sahebdelfar, Fuel Process. Technol., 2013, 109, 118-123.

    31. [31]

      [31] E. Skwarek, S. Khalameida, W. Janusz, V. Sydorchuk, N. Konovalova, V. Zazhigalov, J. Skubiszewska-Zięba, R. Leboda, J. Therm. Anal. Calorim., 2011, 106, 881-894.

    32. [32]

      [32] Yu. A. Agafonov, N. A. Gaidai and A. L. Lapidus, Russ. Chem. Bull., 2014, 63, 381-388.

    33. [33]

      [33] Y. N. Sun, Y. M. Wu, L. Tao, H. H. Shan, G. W. Wang and C. Y. Li, J. Mol. Catal. A, 2015, 397, 120-126.

    34. [34]

      [34] S. M. K. Airaksinen, A. O. I. Krause, Ind. Eng. Chem. Res., 2005, 44, 3862-3868.

    35. [35]

      [35] P. Michorczyk, J. Ogonowski, K. Zeńczak, J. Mol. Catal. A, 2011, 349, 1-12.

    36. [36]

      [36] A. Hakuli, M. E. Harlin, L. B. Backman, A. O. I. Krause, J. Catal., 1999, 184, 349-356.

    37. [37]

      [37] B. M. Weckhuysen, A. A. Verberckmoes, A. R. De Baets, R. A. Schoonheydt, J. Catal., 1997, 166, 160-171.

    38. [38]

      [38] M. S. Kumar, N. Hammer, M. Rönning, A. Holmen, D. Chen, J. C. Walmsley, G. Öye, J. Catal., 2009, 261, 116-128.

    39. [39]

      [39] K. Takehira, Y. Ohishi, T. Shishido, T. Kawabata, K. Takaki, Q. H. Zhang and Y. Wang, J. Catal., 2004, 224, 404-416.

  • 加载中
    1. [1]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    2. [2]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    9. [9]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    12. [12]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    13. [13]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    14. [14]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    15. [15]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(0)
  • Abstract views(503)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return