Citation: Esmat Koohsaryan, Mansoor Anbia. Nanosized and hierarchical zeolites: A short review[J]. Chinese Journal of Catalysis, ;2016, 37(4): 447-467. doi: 10.1016/S1872-2067(15)61038-5 shu

Nanosized and hierarchical zeolites: A short review

  • Corresponding author: Mansoor Anbia, 
  • Received Date: 22 October 2015
    Available Online: 6 January 2016

  • Zeolites are crystalline aluminosilicates with three-dimensional microporous structures. They have been used as ion-exchangers, catalysts, and adsorbents in various fields such as oil refining, petrochemistry, agriculture, and water and wastewater treatment. Their wide use is because of their many beneficial properties, such as framework and compositional flexibilities, physical and hydrothermal stabilities, non-toxicity, high surface areas, exchangeable cations, and good cost-benefit ratios. Although many zeolite applications depend on their microporous structures, this can cause diffusional constraints for bulky reactant and product molecules. There have been many efforts to overcome the intrinsic limitations of conventional zeolites by preparing nanosized and hierarchically structured zeolites. As a result of these efforts, several strategies have been established and the use of new zeolitic materials in various catalytic and adsorptive reactions has been investigated. Longer lifetimes, high catalytic performances, and postponed coking and catalyst deactivation can be achieved using hierarchical and nanosized zeolites. The aim of this review is to provide an overview of the enhanced properties of hierarchical and nanosized zeolites, and recent development methods for their synthesis. The advantages and disadvantages of each route are discussed, and the catalytic applications of nanozeolites and zeolites with secondary porosity, and a comparison with conventional zeolites, are briefly presented.
  • 加载中
    1. [1]

      [1] S. Kulprathipanja, Zeolites in Industrial Separation and Catalysis, Wiley-VCH, Weinheim, 2010.

    2. [2]

      [2] M. Anbia, A. Habibi Davijani, Chem. Eng. J., 2013, 223, 899-907.

    3. [3]

      [3] Z. P. Wang, J. H. Yu, R. R. Xu, Chem. Soc. Rev., 2012, 41, 1729-1741.

    4. [4]

      [4] M. Anbia, F. Mohammadi Nejati, M. Jahangiri, A. Eskandari, V. Garshasbi, J. Sci. I. R. Iran, 2015, 26(3), 213-222.

    5. [5]

      [5] M. Anbia, Z. Parvin, Chem. Eng. Res. Des., 2011, 89, 641-647.

    6. [6]

      [6] F. Bandarchian, M. J. Anbia, Nat. Gas Sci. Eng., 2015, 26, 1380-1387.

    7. [7]

      [7] C. Martínez, J. Perez-Pariente, Zeolites and Ordered Porous Solids: Fundamentals and Applications, Editorial Universitat Politècnica de València, Madrid, 2011.

    8. [8]

      [8] R. M. Mohamed, H. M. Aly, M. F. El-Shahat, I. A. Ibrahim, Microporous Mesoporous Mater., 2005, 79, 7-12.

    9. [9]

      [9] M. Moliner, F. Rey, A. Corma, Angew. Chem. Int. Ed., 2013, 52, 13880-13889.

    10. [10]

      [10] B. Liu, Y. H. Zheng, N. Hu, T. Gui, Y. Q. Li, F. Zhang, R. F. Zhou, X. S. Chen, H. Kita, Microporous Mesoporous Mater., 2014, 196, 270-276.

    11. [11]

      [11] H. Y. Zhang, B. Xie, X. J. Meng, U. Müller, B. Yilmaz, M. Feyen, S. Maurer, H. Gies, T. Tatsumi, X. H. Bao, W. P. Zhang, D. De Vos, F. S. Xiao, Microporous Mesoporous Mater., 2013, 180, 123-129.

    12. [12]

      [12] W. J. Roth, J. Čejka, Catal. Sci. Technol., 2011, 1, 43-53.

    13. [13]

      [13] A. W. Chester, E. G. Derouane, Zeolite Characterization and Catalysis, Springer, New York, 2009.

    14. [14]

      [14] P. Misaelides, Microporous Mesoporous Mater., 2011, 144, 15-18.

    15. [15]

      [15] Y. I. Tarasevich, V. V. Goncharuk, V. E. Polyakov, D. A. Krysenko, Z. G. Ivanova, E. V. Aksenenko, M. Yu. Tryfonova, J. Ind. Eng. Chem., 2012, 18, 1438-1440.

    16. [16]

      [16] A. C. de Campos Bernardi, P. P. A. Oliviera, M. B. de Melo Monte, F. Souza-Barros, Microporous Mesoporous Mater., 2013, 167, 16-21.

    17. [17]

      [17] M. W. Ackley, S. U. Rege, H. Saxena, Microporous Mesoporous Mater., 2003, 61, 25-42.

    18. [18]

      [18] D. Papaioannou, P. D. Katsoulos, N. Panousis, H. Karatzias, Microporous Mesoporous Mater., 2005, 84, 161-170.

    19. [19]

      [19] Y. Li, J. H. Yu, Chem. Rev., 2014, 114, 7268-7316.

    20. [20]

      [20] A. Seidel, M. Bickford, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., Hoboken, 2013.

    21. [21]

      [21] D. Serrano, J. Aguado, J. Escola, in: J. J. Spivey, Y. F. Han, K. M. Dooley eds, Catalysis, Vol. 23, RSC Publishing, Cambridge, 2011, 53.

    22. [22]

      [22] M. Anbia, M. Lashgari, Chem. Eng. J., 2009, 150, 555-560.

    23. [23]

      [23] R. Chal, C. Gérardin, M. Bulut, S. van Donk, ChemCatChem, 2011, 3, 67-81.

    24. [24]

      [24] L. Tosheva, V. P. Valtchev, Chem. Mater., 2005, 17, 2494-2513.

    25. [25]

      [25] M. Zaarour, B. Dong, I. Naydenova, R. Retoux, S. Mintova, Microporous Mesoporous Mater., 2014, 189, 11-21.

    26. [26]

      [26] V. Valtchev, L. Tosheva, Chem. Rev., 2013, 113, 6734-6760.

    27. [27]

      [27] K. K. Zhu, J. M. Sun, J. Liu, L. Q. Wang, H. Y. Wan, J. Z. Hu, Y. Wang, C. H. F. Peden, Z. M. Nie, ACS Catal., 2011, 1, 682-690.

    28. [28]

      [28] G. T. Vuong, V. T. Hoang, D. T. Nguyen, T. O. Do, Appl. Catal. A, 2010, 382, 231-239..

    29. [29]

      [29] X. Y. Chen, K. Wendell, J. Zhu, J. L. Li, X. X. Yu, Z. J. Zhang, Bioresour. Technol., 2012, 110, 79-85.

    30. [30]

      [30] G. T. Vuong, T. O. Do, J. Am. Chem. Soc., 2007, 129, 3810-3811.

    31. [31]

      [31] W. Song, R. E. Justice, C. A. Jones, V. H. Grassian, S. C. Larsen, Langmuir, 2004, 20, 4696-4702.

    32. [32]

      [32] S. Mintova, J. P. Gilson, V. Valtchev, Nanoscale, 2013, 5, 6693-6703.

    33. [33]

      [33] L. Burel, A. Tuel, Microporous Mesoporous Mater., 2013, 174, 90-99.

    34. [34]

      [34] N. Esmaeili, H. Kazemian, D. Bastani, Iran. J. Chem. Chem. Eng., 2011, 30, 9-14.

    35. [35]

      [35] B. Xie, J. W. Song, L. M. Ren, Y. Y. Ji, J. X. Li, F. S. Xiao, Chem. Mater., 2008, 20, 4533-4535.

    36. [36]

      [36] G. Reding, T. Mäurer, B. Kraushaar-Czarnetzki, Microporous Mesoporous Mater., 2003, 57, 83-92.

    37. [37]

      [37] D. Serrano, J. Aguado, J. Rodriguez, A. Peral, Stud. Surf. Sci. Catal., 2007, 170, 282-288.

    38. [38]

      [38] Y. S. Li, W. S. Yang, J. Membrane Sci., 2008, 316, 3-17.

    39. [39]

      [39] Z. W. Chen, S. Li, Y. Yan, Chem. Mater., 2005, 17, 2262-2266.

    40. [40]

      [40] M. Mehdipourghazi, A. Moheb, H. Kazemian, Microporous Mesoporous Mater., 2010, 136, 18-24.

    41. [41]

      [41] Y. Y. Hu, C. Liu, Y. H. Zhang, N. Ren, Y. Tang, Microporous Mesoporous Mater., 2009, 119, 306-314.

    42. [42]

      [42] Y. M. Liu, W. Huang, Y. S. Zhao, T. Dou, React. Kinet. Catal. Lett., 2009, 96, 157-163.

    43. [43]

      [43] M. Nasrollahzadeh, A. Ehsani, A. Rostami-Vartouni, Ultrason. Sonochem., 2014, 21, 275-282.

    44. [44]

      [44] H. Zhao, G. A. Baker, J. Chem. Technol. Biotechnol., 2013, 88, 3-12.

    45. [45]

      [45] X. J. Wang, C. L. Yan, Inorg. Mater., 2010, 46, 517-521.

    46. [46]

      [46] R. Cai, Y. Liu, S. Gu, Y. Yan, J. Am. Chem. Soc., 2010, 132, 12776-12777.

    47. [47]

      [47] C. X. Zhao, L. He, S. Z. Qiao, A. P. Middelberg, Chem. Eng. Sci., 2011, 66, 1463-1479.

    48. [48]

      [48] Y. C. Pan, M. H. Ju, J. F. Yao, L. X. Zhang, N. P. Xu, Chem. Commun., 2009, 7233-7235.

    49. [49]

      [49] T. Wakihara, A. Ihara, S. Inagaki, J. Tatami, K. Sato, K. Komeya, T. Meguro, Y. Kubota, A. Nakahira, Cryst. Growth. Des., 2011, 11, 5153-5158.

    50. [50]

      [50] T. Wakihara, R. Ichikawa, J. Tatami, A. Endo, K. Yoshida, Y. Sasaki, K. Komeya, T. Meguro, Cryst. Growth Des., 2011, 11, 955-958.

    51. [51]

      [51] A. Charkhi, H. Kazemian, M. Kazemeini, Powder Technol., 2010, 203, 389-396.

    52. [52]

      [52] A. Nezamzadeh-Ejhieh, S. Khorsandi, J. Ind. Eng. Chem., 2014, 20, 937-946.

    53. [53]

      [53] G. T. Vuong, T. O. Do, Microporous Mesoporous Mater., 2009, 120, 310-316.

    54. [54]

      [54] J. Kecht, S. Mintova, T. Bein, Langmuir, 2008, 24, 4310-4315.

    55. [55]

      [55] J. Kecht, S. Mintova, T. Bein, Microporous Mesoporous Mater., 2008, 116, 258-266.

    56. [56]

      [56] S. Mintova, V. Valtchev, T. Onfroy, C. Marichal, H. Knözinger, T. Bein, Microporous Mesoporous Mater., 2006, 90, 237-245.

    57. [57]

      [57] A. Sakthivel, A. Iida, K. Komura, Y. Sugi, K. V. R. Chary, Microporous Mesoporous Mater., 2009, 119, 322-330.

    58. [58]

      [58] M. Jafari, T. Mohammadi, M. Kazemimoghadam, Ceram. Int., 2014, 40, 12075-12080.

    59. [59]

      [59] M. Maldonado, M. D. Oleksiak, S. Chinta, J. D. Rimer, J. Am. Chem. Soc., 2013, 135, 2641-2652.

    60. [60]

      [60] L. Zhang, S. L. Liu, S. J. Xie, L. Y. Xu, Microporous Mesoporous Mater., 2012, 147, 117-126.

    61. [61]

      [61] S. Gopalakrishnan, T. Yamaguchi, S. i. Nakao, J. Membrane Sci., 2006, 274, 102-107.

    62. [62]

      [62] E. P. Ng, J. M. Goupil, A. Vicente, C. Fernandez, R. Retoux, V. Valtchev, S. Mintova, Chem. Mater., 2012, 24, 4758-4765.

    63. [63]

      [63] N. Ren, J. Bronić, B. Subotić, Y. M. Song, X. C. Lü, Y. Tang, Microporous Mesoporous Mater., 2012, 147, 229-241.

    64. [64]

      [64] G. Majano, A. Darwiche, S. Mintova, V. Valtchev, Ind. Eng. Chem. Res., 2009, 48, 7084-7091.

    65. [65]

      [65] C. Madsen, C. Madsen, C. J. H. Jacobsen, Chem. Commun., 1999, 673-674.

    66. [66]

      [66] I. Schmidt, C. Madsen, C. J. H. Jacobsen, Inorg. Chem., 2000, 39, 2279-2283.

    67. [67]

      [67] C. J. H. Jacobsen, C. Madsen, T. V. W. Janssens, H. J. Jakobsen, J. Skibsted, Microporous Mesoporous Mater., 2000, 39, 393-401.

    68. [68]

      [68] K. Tang, Y. G. Wang, L. J. Song, L. H. Duan, X. T. Zhang, Z. L. Sun, Mater. Lett., 2006, 60, 2158-2160.

    69. [69]

      [69] Y. C. Pan, J. F. Yao, L. X. Zhang, J. X. Ju, H. T. Wang, N. P. Xu, Chem. Eng. Technol., 2009, 32, 732-737.

    70. [70]

      [70] M. Rasouli, N. Yaghobi, M. Hafezi, M. Rasouli, J. Ind. Eng. Chem., 2012, 18, 1970-1976.

    71. [71]

      [71] S. K. H. Nejad-Darzi, A. Samadi-Maybodi, M. Ghobakhluo, J. Porous Mater., 2013, 20, 909-916.

    72. [72]

      [72] L. Seifi, A. Torabian, H. Kazemian, G. N. Bidhendi, A. A. Azimi, A. Charkhi, Water Air Soil Poll., 2011, 217, 611-625.

    73. [73]

      [73] F. Adam, J. T. Wong, E. P. Ng, Chem. Eng. J., 2013, 214, 63-67.

    74. [74]

      [74] X. M. Ji, W. Yao, Y. Y. Hu, N. Ren, J. Zhou, Y. P. Huang, Y. Tang, Sensor Mater., 2011, 23, 303-313.

    75. [75]

      [75] T. Tago, H. Konno, Y. Nakasaka, T. Masuda, Catal. Surv. Asia, 2012, 16, 148-163.

    76. [76]

      [76] Y. M. Ni, A. M. Sun, X. L. Wu, G. L. Hai, J. L. Hu, T. Li, G. X. Li, Microporous Mesoporous Mater., 2011, 143, 435-442.

    77. [77]

      [77] S. G. Bao, G. Z. Liu, X. W. Zhang, L. Wang, Z. T. Mi, Ind. Eng. Chem. Res., 2010, 49, 3972-3975.

    78. [78]

      [78] C. Covarrubias, F. Gracia, H. Palza, Appl. Catal. A, 2010, 384, 186-191.

    79. [79]

      [79] H. B. Zhang, Y. C. Ma, K. S. Song, Y. H. Zhang, Y. Tang, J. Catal., 2013, 302, 115-125.

    80. [80]

      [80] B. Louis, A. Vicente, C. Fernandez, V. Valtchev, J. Phys. Chem. C, 2011, 115, 18603-18610.

    81. [81]

      [81] H. Konno, T. Tago, Y. Nakasaka, R. Ohnaka, J. i Nishimura, T. Masuda, Microporous Mesoporous Mater., 2013, 175, 25-33.

    82. [82]

      [82] A. A. Rownaghi, F. Rezaei, J. Hedlund, Catal. Commun., 2011, 14, 37-41.

    83. [83]

      [83] Y. Huang, J. Ho, Z. Wang, P. Nakashima, A. J. Hill, H. Wang, Microporous Mesoporous Mater., 2009, 117, 490-496.

    84. [84]

      [84] Y. Zhang, N. Ren, Y. Tang, in: V. Valtchev, S. Mintova, M. Tsapatsis ed., Ordered Porous Solids: Recent Advances and Prospects, Elsevier, Amsterdam, 2008, 441.

    85. [85]

      [85] X. Y. Li, M. H. Sun, J. C. Rooke, L. H. Chen, B. L. Su, Chin. J. Catal., 2013, 34, 22-47.

    86. [86]

      [86] M. S. Holm, E. Taarning, K. Egeblad, C. H. Christensen, Catal. Today, 2011, 168, 3-16.

    87. [87]

      [87] D. P. Serrano, J. M. Escola, P. Pizarro, Chem. Soc. Rev., 2013, 42, 4004-4035.

    88. [88]

      [88] J. Perez-Ramirez, C. H. Christensen, K. Egeblad, C. H. Christensen, J. C. Groen, Chem. Soc. Rev., 2008, 37, 2530-2542.

    89. [89]

      [89] Q. T. Sheng, K. C. Ling, Z. R. Li, L. F. Zhao, Fuel Process. Technol., 2013, 110, 73-78.

    90. [90]

      [90] R. Otomo, T. Yokoi, J. N. Kondo, T. Tatsumi, Appl. Catal. A, 2014, 470, 318-326.

    91. [91]

      [91] K. Möller, T. Bein, Chem. Soc. Rev., 2013, 42, 3689-3707.

    92. [92]

      [92] M. D. González, Y. Cesteros, P. Salagre, Microporous Mesoporous Mater., 2011, 144, 162-170.

    93. [93]

      [93] R. Giudici, H. W. Kouwenhoven, R. Prins, Appl. Catal. A, 2000, 203, 101-110.

    94. [94]

      [94] J. M. Müller, G. C. Mesquita, S. M. Franco, L. D. Borges, J. L. de Macedo, J. A. Dias, S. C. L. Dias, Microporous Mesoporous Mater., 2015, 204, 50-57.

    95. [95]

      [95] M. Müller, G. Harvey, R. Prins, Microporous Mesoporous Mater., 2000, 34, 135-147.

    96. [96]

      [96] J. Datka, J. Klinowski, B. Sulikowski, Catal. Lett., 1994, 25, 403-404.

    97. [97]

      [97] D. Verboekend, J. Pérez-Ramírez, Catal. Sci. Technol., 2011, 1, 879-890.

    98. [98]

      [98] A. Bonilla, D. Baudouin, J. Pérez-Ramírez, J. Catal., 2009, 265, 170-180.

    99. [99]

      [99] J. C. Groen, S. Abelló, L. A. Villaescusa, J. Pérez-Ramírez, Microporous Mesoporous Mater., 2008, 114, 93-102.

    100. [100]

      [100] J. C. Groen, J. C. Jansen, J. A. Moulijn, J. Pérez-Ramírez, J. Phys. Chem. B, 2004, 108, 13062-13065.

    101. [101]

      [101] S. Abello, A. Bonilla, J. Perez-Ramirez, Appl .Catal. A, 2009, 364, 191-198.

    102. [102]

      [102] K. H. Li, J. Valla, J. Garcia-Martinez, ChemCatChem, 2014, 6, 46-66.

    103. [103]

      [103] D. P. Serrano, R. Sanz, P. Pizarro, I. Moreno, S. Shami, Microporous Mesoporous Mater., 2014, 189, 71-82.

    104. [104]

      [104] J. García-Martínez, M. Johnson, J. Valla, K. H. Li, J. Y. Ying, Catal. Sci. Technol., 2012, 2, 987-994.

    105. [105]

      [105] I. I. Ivanova, I. A. Kasyanov, A. A. Maerle, V. I. Zaikovskii, Microporous Mesoporous Mater., 2014, 189, 163-172.

    106. [106]

      [106] J. P. Na, G. Z. Liu, T. Y. Zhou, G. C. Ding, S. L. Hu, L. Wang, Catal. Lett., 2013, 143, 267-275.

    107. [107]

      [107] I. I. Ivanova, E. E. Knyazeva, Chem. Soc. Rev., 2013, 42, 3671-3688.

    108. [108]

      [108] N. D. Lysenko, V. G. Il'in, P. S. Yaremov, Theor. Exp. Chem., 2011, 47, 257-263.

    109. [109]

      [109] M. B. Yue, L. B. Sun, T. T. Zhuang, X. Dong, Y. Chun, J. H. Zhu, J. Mater. Chem., 2008, 18, 2044-2050.

    110. [110]

      [110] Y W. Zhang, T Okubo, M. Ogura, Chem. Commun., 2005, 2719-2720.

    111. [111]

      [111] Y. X. Jia, W. Han, G. X. Xiong, W. S. Yang, Mater. Lett., 2008, 62, 2400-2403.

    112. [112]

      [112] Y. J. Wang, Y. Tang, A. G. Dong, X. D. Wang, N. Ren, Z. Gao, J. Mater. Chem., 2002, 12, 1812-1818.

    113. [113]

      [113] Y. P. Guo, H. J. Wang, Y. J. Guo, L. H. Guo, L. F. Chu, C. X. Guo, Chem. Eng. J., 2011, 166, 391-400.

    114. [114]

      [114] G. Majano, S. Mintova, O. Ovsitser, B. Mihailova, T. Bein, Microporous Mesoporous Mater., 2005, 80, 227-235.

    115. [115]

      [115] D. P. Serrano, J. Aguado, G. Morales, J. M. Rodriguez, A. Peral, M. Thommes, J. P. Epping, B. F. Chmelka, Chem. Mater., 2009, 21, 641-654.

    116. [116]

      [116] K. Möller, B. Yilmaz, U. Müller, T. Bein, Chem. Mater., 2011, 23, 4301-4310.

    117. [117]

      [117] Y. M. Fang, H. Q. Hu, G. H. Chen, Chem. Mater., 2008, 20, 1670-1672.

    118. [118]

      [118] C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, J. Am. Chem. Soc., 2000, 122, 7116-7117.

    119. [119]

      [119] S. Frisch, L. M. Rösken, J. Caro, M. Wark, Microporous Mesoporous Mater., 2009, 120, 47-52.

    120. [120]

      [120] Y. C. Tong, T. B. Zhao, F. Y. Li, Y. Wang, Chem. Mater., 2006, 18, 4218-4220.

    121. [121]

      [121] K. K. Zhu, K. Egeblad, C. H. Christensen, Eur. J. Inorg. Chem., 2007, 3955-3960.

    122. [122]

      [122] I. Schmidt, A. Boisen, E. Gustavsson, K. Ståhl, S. Pehrson, S. Dahl, A. Carlsson, C. J. H. Jacobsen, Chem. Mater., 2001, 13, 4416-4418.

    123. [123]

      [123] H. B. Zhu, Z. C. Liu, Y. D. Wang, D. J. Kong, X. H. Yuan, Z. K. Xie, Chem. Mater., 2007, 20, 1134-1139.

    124. [124]

      [124] L. F. Wang, C. Y. Yin, Z. C. Shan, S. Liu, Y. C. Du, F. S. Xiao, Colloids Surf. A, 2009, 340, 126-130.

    125. [125]

      [125] F. J. Liu, T. Willhammar, L. Wang, L. F. Zhu, Q. Sun, X. J. Meng, W. Carrillo-Cabrera, X. D. Zou, F. S. Xiao, J. Am. Chem. Soc., 2012, 134, 4557-4560.

    126. [126]

      [126] F. S. Xiao, L. F. Wang, C. Y. Yin, K. F. Lin, Y. Di, J. X. Li, R. R. Xu, D. S. Su, R. Schlögl, T. Yokoi, T. Tatsumi, Angew. Chem. Int. Ed., 2006, 45, 3090-3093.

    127. [127]

      [127] R. Srivastava, M. Choi, R. Ryoo, Chem. Commun., 2006, 4489-4491.

    128. [128]

      [128] L. F. Wang, Z. Zhang, C. Y. Yin, Z. C. Shan, F. S. Xiao, Microporous Mesoporous Mater., 2010, 131, 58-67.

    129. [129]

      [129] H. X. Tao, H. Yang, X. H. Liu, J. W. Ren, Y. Q. Wang, G. Z. Lu, Chem. Eng. J., 2013, 225, 686-694.

    130. [130]

      [130] H. X. Tao, C. L. Li, J. W. Ren, Y. Q. Wang, G. Z. Lu, J. Solid State Chem., 2011, 84, 1820-1827.

    131. [131]

      [131] J. Zhu, Y. H. Zhu, L. K. Zhu, M. Rigutto, A. van der Made, C. G. Yang, S. X. Pan, L. Wang, L. F. Zhu, Y. Y. Jin, Q. Sun, Q. M. Wu, X. J. Meng, D. L. Zhang, Y. Han, J. X. Li, Y. Y. Chu, A. M. Zheng, S. L. Qiu, X. M. Zheng, F. S. Xiao, J. Am. Chem. Soc., 2014, 136, 2503-2510.

    132. [132]

      [132] Q. Lü, G. Li, H. Y. Sun, Fuel, 2014, 130, 70-75.

    133. [133]

      [133] C. Yin, D. Tian, M. Xu, Y. J. Wei, X. Bao, Y. H. Chen, F. W. Wang, J. Colloid Interface Sci., 2013, 397, 108-113.

    134. [134]

      [134] C. Y. Yin, L. L. Feng, R. Ni, L. Y. Hu, X. Zhao, D. Tian, Powder Technol., 2014, 253, 10-13.

    135. [135]

      [135] J. S. Jin, C. Y. Peng, J. J. Wang, H. T. Liu, X. H. Gao, H. H. Liu, C. Y. Xu, Ind. Eng. Chem. Res., 2014, 53, 3406-3411.

    136. [136]

      [136] A. A. Rownaghi, F. Rezaei, M. Stante, J. Hedlund, Appl. Catal. B, 2012, 119, 56-61.

    137. [137]

      [137] A. A. Rownaghi, J. Hedlund, Ind. Eng. Chem. Res., 2011, 50, 11872-11878.

    138. [138]

      [138] Y. E. Yan, X. Guo, Y. H. Zhang, Y. Tang, Catal. Sci. Technol., 2015, 5, 772-785.

    139. [139]

      [139] D. Verboekend, J. Pérez-Ramírez, ChemSusChem, 2014, 7, 753-764.

    140. [140]

      [140] P. R. Makgwane, S. S. Ray, J. Nanosci. Nanotechnol., 2014, 14, 1338-1363.

    141. [141]

      [141] R. R. Willis, A. I. Benin, Stud. Surf. Sci. Catal., 2007, 170, 242-249.

    142. [142]

      [142] D. Verboekend, S. Mitchell, J. Pérez-Ramírez, Chimia, 2013, 67, 327-332.

    143. [143]

      [143] J. C. Groen, J. A. Moulijn, J. Pérez-Ramírez, Ind. Eng. Chem. Res., 2007, 46, 4193-4201.

    144. [144]

      [144] J. Pérez-Ramírez, S. Mitchell, D. Verboekend, M. Milina, N. L. Michels, F. Krumeich, N. Marti, M. Erdmann, ChemCatChem, 2011, 3, 1731-1734.

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    7. [7]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    8. [8]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    9. [9]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    11. [11]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    12. [12]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    16. [16]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    17. [17]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    18. [18]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    19. [19]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(2)
  • Abstract views(620)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return