Citation: Mohsen Keyvanfard, Khadijeh Alizad. Determination of isoproterenol in pharmaceutical and biological samples using a pyrogallol red multiwalled carbon nanotube paste electrode as a sensor[J]. Chinese Journal of Catalysis, ;2016, 37(4): 579-583. doi: 10.1016/S1872-2067(15)61036-1 shu

Determination of isoproterenol in pharmaceutical and biological samples using a pyrogallol red multiwalled carbon nanotube paste electrode as a sensor

  • Corresponding author: Mohsen Keyvanfard, 
  • Received Date: 10 October 2015
    Available Online: 5 January 2016

  • Isoproterenol (ISPR) is an important catecholamine-based drug that is widely used in the treatment of heart disease. However, overdose of this drug is very dangerous to the human body. In this study, a new sensor based on a pyrogallol red modified-multiwalled carbon nanotube paste electrode (PGRMMWCNTPE) was prepared and used for high sensitivity determination of ISPR in aqueous solution. Electrocatalytic oxidation of ISPR at the PGRMMWCNTPE was investigated by chronoamperometry, cyclic voltammetry, and square-wave voltammetry. The values of the catalytic rate constant, electron transfer coefficient, and diffusion coefficient for ISPR oxidation were then calculated using voltammetric data. A linear calibration curve was constructed for ISPR concentration in the range 0.8-570 μmol/L with a detection limit of 0.47 μmol/L ISPR. The sensor was then applied to the determination of ISPR in urine and drug samples with satisfactory results.
  • 加载中
    1. [1]

      [1] L. Goodman, A. Gilman, The Pharmacological Basis of Therapeutics, 9 ed., McGraw-Hill Professional, New York, 1996, 105.

    2. [2]

      [2] L. Elrod, J. L. Schmit, J. A. Morley, J. Chromatogr. A, 1996, 723, 235-241.

    3. [3]

      [3] B. J. Sanghavi, S. M. Mobin, P. Mathur, G. K. Lahiri, A. K. Srivastava, Biosens. Bioelectron., 2013, 39, 124-132

    4. [4]

      [4] A. A. Ensafi, H. K. Maleh, Int. J. Electrochem. Sci., 2010, 5, 1484-1495.

    5. [5]

      [5] H. Karimi-Maleh, F. Tahernejad-Javazmi, A. A. Ensafi, R. Moradi, S. Mallakpour, H. Beitollahi, Biosens. Bioelect., 2014, 60, 1-7.

    6. [6]

      [6] M. Keyvanfard, H. Karimi-Maleh, K. Alizad, Chin. J. Catal., 2013, 34, 1883-1889.

    7. [7]

      [7] M. Keyvanfard, M. Ahmadi, F. Karimi, K. Alizad, Chin. Chem. Lett., 2014, 25, 1244-1246.

    8. [8]

      [8] A. S. Isfahani, M. Keyvanfard, B. Rezaei, K. Alizad, Current Nanosci., 2014, 10, 512-520.

    9. [9]

      [9] J. Barek, J. Fischer, J. C. Moreira, J. Wang, in: K. Kalcher, R. Metelka, I. Švancara, K. Vytřas eds., Sensing in Electroanalysis, University Press Centre, Pardubice, 2013/2014, Volume 8.

    10. [10]

      [10] A. A. Ensafi, E. Khoddami, H. Karimi-Maleh, Int. J. Electrochem. Sci., 2011, 6, 2596-2608.

    11. [11]

      [11] B. J. Sanghavi, W. Varhue, J. L. Chávez, C. F. Chou, N. S. Swami, Anal. Chem., 2014, 86, 4120-4125.

    12. [12]

      [12] S. N. Azizi, S. Ghasemi, N. S. Gilani, Chin. J. Catal., 2014, 35, 383-390.

    13. [13]

      [13] A. A. Ensafi, M. Lotfi, H. Karimi-Maleh, Chin. J. Catal., 2012, 33, 487-493.

    14. [14]

      [14] B. Habibi, M. Abazari, M. H. Pournaghi-Azar, Chin. J. Catal., 2012, 33, 1783-1790.

    15. [15]

      [15] H. Karimi-Maleh, F. Tahernejad-Javazmi, N. Atar, M. L. Yola, V. K. Gupta, A. A. Ensafi, Ind. Eng. Chem. Res., 2015, 54, 3634-3639.

    16. [16]

      [16] M. R. Ganjali, P. Norouzi, M. Ghorbani, A. Sepehri, Talanta, 2005, 66, 1225-1233.

    17. [17]

      [17] P. Norouzi, M. R. Ganjali, M. Zare, A. Mohammadi, J. Pharm. Sci., 2007, 96, 2009-2017.

    18. [18]

      [18] P. Norouzi, M. R. Ganjali, T. Alizadeh, P. Daneshgar, Electroanalysis, 2006, 18, 947-954.

    19. [19]

      [19] P. Norouzi, M. R. Ganjali, L. Hajiaghababaei, Anal. Lett., 2006, 39, 1941-1953.

    20. [20]

      [20] T. Alizadeh, M. R. Ganjali, M. Zare, P. Norouzi, Electrochim. Acta, 2010, 55, 1568-1574.

    21. [21]

      [21] B. J. Sanghavi, A. K. Srivastava, Electrochim. Acta, 2010, 55, 8638-8648.

    22. [22]

      [22] M. L. Yola, N. Atar, Electrochim. Acta, 2014, 119, 24-31.

    23. [23]

      [23] B. J. Sanghavi, A. K. Srivastava, Electrochim. Acta, 2011, 56, 4188-4196.

    24. [24]

      [24] B. J. Sanghavi, P. K. Kalambate, S. P. Karna, A. K. Srivastava, Talanta, 2014, 120, 1-9

    25. [25]

      [25] M. L. Yola, N. Atar, Z. Üstündağ, A. O. Solak, J. Electroanal. Chem., 2013, 698, 9-16.

    26. [26]

      [26] M. L. Yola, T. Eren, N. Atar, Sens. Actuators B, 2014, 195, 28-35.

    27. [27]

      [27] H. Karimi-Maleh, P. Biparva, M. Hatami, Biosens. Bioelect., 2013, 48, 270-275.

    28. [28]

      [28] R. Sadeghi, H. Karimi-Maleh, A. Bahari, M. Taghavi, Phys. Chem. Liq., 2013, 51, 704-714.

    29. [29]

      [29] R. Moradi, S. A. Sebt, H. Karimi-Maleh, R. Sadeghi, F. Karimi, A. Bahari, H. Arabi, Phys. Chem. Chem. Phys., 2013, 15, 5888-5897.

    30. [30]

      [30] M. Najafi, M. A. Khalilzadeh, H. Karimi-Maleh, Food Chem., 2014, 158, 125-131.

    31. [31]

      [31] M. Keyvanfard, V. Khosravi, H. Karimi-Maleh, K. Alizad, B. Rezaei, J. Mol. Liq., 2013, 177, 182-189.

    32. [32]

      [32] M. Elysi, M. A. Khalilzadeh, H. Karimi-Maleh, Food Chem., 2013, 141, 4311-4317.

    33. [33]

      [33] M. Keyvanfard, R. Salmani-Mobarakeh, H. Karimi-Maleh, K. Alizad, Chin. J. Catal., 2014, 35, 1166-1172.

    34. [34]

      [34] A. A. Ensafi, H. Karimi-Maleh, J. Electroanal. Chem., 2010, 640, 75-83

    35. [35]

      [35] E. M. Silva, R. M. Takeuchi, A. L. Santos, Food Chem., 2015, 173, 763-769.

    36. [36]

      [36] H. Karimi-Maleh, S. Rostami, V. K. Gupta, M. Fouladgar, J. Mol. Liq., 2015, 201, 102-107.

  • 加载中
    1. [1]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    6. [6]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    7. [7]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    8. [8]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    9. [9]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    10. [10]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    11. [11]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    12. [12]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    13. [13]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    14. [14]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    15. [15]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Linghua Chen . 基于双联动“三学”模式的食品专业分析化学教学改革. University Chemistry, 2025, 40(8): 78-91. doi: 10.12461/PKU.DXHX202409095

    19. [19]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    20. [20]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

Metrics
  • PDF Downloads(0)
  • Abstract views(417)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return