Citation: Eda Sinirtas, Meltem Isleyen, Gulin Selda Pozan Soylu. Photocatalytic degradation of 2,4-dichlorophenol with V2O5-TiO2 catalysts: Effect of catalyst support and surfactant additives[J]. Chinese Journal of Catalysis, ;2016, 37(4): 607-615. doi: 10.1016/S1872-2067(15)61035-X shu

Photocatalytic degradation of 2,4-dichlorophenol with V2O5-TiO2 catalysts: Effect of catalyst support and surfactant additives

  • Corresponding author: Gulin Selda Pozan Soylu, 
  • Received Date: 6 October 2015
    Available Online: 22 December 2015

    Fund Project: 土耳其科学技术研究委员会(111M210 [2011-2013]). (111M210 [2011-2013])

  • Binary oxide catalysts with various weight percentage V2O5 loadings were prepared by solid-state dispersion and the nanocomposites were modified with surfactants. The catalysts were analyzed using X-ray diffraction, diffuse-reflectance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and N2 adsorption-desorption. The photocatalytic activities of the catalysts were evaluated in the degradation of 2,4-dichlorophenol under ultraviolet irradiation. The photocatalytic activity of 50 wt% V2O5-TiO2 (50V2O5-TiO2) was higher than those of pure V2O5, TiO2, and P25. Interactions between V2O5 and TiO2 affected the photocatalytic efficiencies of the binary oxide catalysts. Cetyltrimethylammonium bromide (CTAB) and hexadecyltrimethylammonium bromide (HTAB) significantly enhanced the efficiency of the 50V2O5-TiO2 catalyst. The highest percentage of 2,4-dichlorophenol degradation (100%) and highest reaction rate (2.22 mg/(L·min)) were obtained in 30 min with the (50V2O5-TiO2)-CTAB catalyst. It is concluded that the addition of a surfactant to the binary oxide significantly enhanced the photocatalytic activity by modifying the optical and electronic properties of V2O5 and TiO2.
  • 加载中
    1. [1]

      [1] J. Zhang, D. Q. Liu, W. J. Bian, X. H. Chen, Desalination, 2012, 304, 49-56.

    2. [2]

      [2] L. Ren, J. Zhang, Y. Li, C. L. Zhang, Chem. Eng. J., 2011, 168, 553-561.

    3. [3]

      [3] B. H. Hameed, I. A. W. Tan, A. L. Ahmad, Chem. Eng. J., 2008, 144, 235-244.

    4. [4]

      [4] S. G. Chung, Y. S. Chang, J. W. Choi, K. Y. Baek, S. W. Hong, S. T. Yun, S. H. Lee, Chem. Eng. J., 2013, 215, 921-928.

    5. [5]

      [5] Z. Zhang, Q. H. Shen, N. Cissoko, J. Wo, X. Xu, J. Hazard. Mater., 2010, 182, 252-258.

    6. [6]

      [6] T. Zhou, Y. Z. Li, T. T. Lim, Sep. Purif. Technol., 2010, 76, 206-214.

    7. [7]

      [7] A. O. Olaniran, E. O. Igbinosa, Chemosphere, 2011, 83, 1297-1306.

    8. [8]

      [8] L. Liu, F. Chen, F. Yang, Y. Chen, J. Crittenden, Chem. Eng. J., 2012, 181, 189-195.

    9. [9]

      [9] N. Zhang, M. Q. Yang, S. Q. Liu, Y. G. Sun, Y. J. Xu, Chem. Rev., 2015, 115, 10307-10377.

    10. [10]

      [10] T. K. Tseng, Y. S. Lin, Y. J. Chen, H. Chu, Int. J. Mol. Sci., 2010, 11, 2336-2361.

    11. [11]

      [11] F. Ribonia, L. G. Bettini, D. W. Bahnemann, E. Selli, Catal. Today, 2013, 209, 28-34.

    12. [12]

      [12] X. F. Lei, X. X. Xue, Mater. Sci. Semicond. Process., 2008, 11, 117-121.

    13. [13]

      [13] H. Liu, T. Xia, H. K. Shon, S. Vigneswaran, J. Ind. Eng. Chem., 2011, 17, 461-467.

    14. [14]

      [14] L. Li, C. Y. Liu, Y. Liu, Mater. Chem. Phys., 2009, 113, 551-557.

    15. [15]

      [15] S. Q. Liu, Z. R. Tang, Y. G. Sun, J. C. Colmenares, Y. J. Xu, Chem. Soc. Rev., 2015, 44, 5053-5075.

    16. [16]

      [16] K. Esumi, S. Nakagawa, T. Yoshımu, J. Jpn Soc. Colour Mater., 2004, 77, 13-18.

    17. [17]

      [17] Y. Cho, H. Kyung, W. Choi, Appl. Catal. B, 2004, 52, 23-32.

    18. [18]

      [18] E. O. Scott-Emuakpor, A. Kruth, M. J. Todd, A. Raab, G. I. Paton, D. E. Macphee, Appl. Catal. B, 2012, 123, 433-439.

    19. [19]

      [19] H. Wang, J. P. Lewis, J. Phys: Condens. Matter, 2005, 17, L209-L213.

    20. [20]

      [20] C. D. Valentin, G. Pacchioni, A. Selloni, Chem. Mater., 2005, 17, 6656-6665.

    21. [21]

      [21] L. Li, C. Y. Liu, Y. Liu, Mater. Chem. Phys., 2009, 113, 551-557.

    22. [22]

      [22] D. E. Gu, B. C. Yang, Y. D. Hu, Catal. Lett., 2007, 118, 254-259.

    23. [23]

      [23] S. M. Chang, W. S. Liu, Appl. Catal. B, 2011, 101, 333-342.

    24. [24]

      [24] J. E. Herrera, T. T. Isimjan, I. Abdullahi, A. Ray, S. Rohani, Appl. Catal. A, 2012, 417, 13-18.

    25. [25]

      [25] L. E. Briand, O. P. Tkachenko, M. Guraya, X. Gao, I. E. Wachs, W. Grunert, J. Phys. Chem. B, 2004, 108, 4823-4830.

    26. [26]

      [26] T. M. D. Dang, T. M. H. Nguyen, H. P. Nguyen, Adv. Nat. Sci., 2010, 1, 1-10.

    27. [27]

      [27] K. R. Gota, S. Suresh, Asian J. Chem., 2014, 26, 7087-7101.

    28. [28]

      [28] C. A. H. Aguilar, T. Pandiyan, J. A. Arenas-Alatorre, N. Singh, Sep. Purif. Technol., 2015, 149, 265-278.

    29. [29]

      [29] A. Kambur, G. S. Pozan, I. Boz, Appl. Catal. B, 2012, 115, 149-158.

    30. [30]

      [30] J. G. Yu, B. Wang, Appl. Catal. B, 2010, 94, 295-302.

    31. [31]

      [31] A. P. Zhang, J. Z. Zhang, Spectrochim. Acta Part A, 2009, 73, 336-341.

    32. [32]

      [32] V. D. Nithya, R. K. Selvan, C. Sanjeeviraja, D. M. Radheep, S. Arumugam S, Mater. Res. Bull., 2011, 46, 1654-1658.

    33. [33]

      [33] F. Bai, D. S. Wang, Z. Y. Huo, W. Chen, L. P. Liu, X. Liang, C. Chen, X. Wang, Q. Peng, Y. D. Li, Angew. Chem. Int. Ed., 2007, 46, 6650-6653.

    34. [34]

      [34] N. Molahasani, M. S. Sadjadi, K. Zare, Int. J. Nano Dimens., 2013, 4, 161-166.

    35. [35]

      [35] M. Shang, W. Z. Wang, L. Zhou, S. M. Sun, W. Z. Yin, J. Hazard. Mater., 2009, 172, 338-344.

    36. [36]

      [36] F. Lei, B. Yan, H. H. Chen, Q. Zhang, J. T. Zhao, Cryst. Growth Des., 2009, 9, 3730-3736.

    37. [37]

      [37] M. Kanna, S. Wongnawa, Mater. Chem. Phys., 2008, 110, 166-175.

    38. [38]

      [38] G. C. Chen, X. Q. Shan, Y. S. Wang, B. Wen, Z. G. Pei, Y. N. Xie, T. Liu, J. J. Pignatello, Water Res., 2009, 43, 2409-2418.

    39. [39]

      [39] P. Venkatesan, J. Santhanalakshmi, Nanosci. Nanotechnol., 2011, 1, 43-47.

    40. [40]

      [40] L. Q. Jing, H. G. Fu, B. Q. Wang, D. J. Wang, B. F. Xin, S. Li, J. Z. Sun, Appl. Catal. B, 2006, 62, 282-291.

    41. [41]

      [41] Z. Y. Liu, D. D. Sun, P. Guo, J. O. Leckie, Nano Lett., 2007, 7, 1081-1085.

    42. [42]

      [42] C. Han, M. Q. Yang, N. Zhang, Y. J. Xu, J. Mater. Chem. A, 2014, 2, 19156-19166.

    43. [43]

      [43] C. Han, Z. Chen, N. Zhang, J. C. Colmenares, Y. J. Xu, Adv. Funct. Mater., 2015, 25, 221-229.

    44. [44]

      [44] H. Benhebal, M. Chai, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, B. Heinrichs, Alexandria Eng. J., 2013, 52, 517-523.

    45. [45]

      [45] J. B. Zhong, J. Z. Li, Z. H. Xiao, W. Hu, X. B. Zhou, X. W. Zheng, Mater. Lett., 2012, 91, 301-303.

    46. [46]

      [46] W. F. Yao, X. H. Xiao, H. Wang, J. T. Zhou, X. N. Yang, Y. Zhang, S. X. Shang, B. B. Huang, Appl. Catal. B, 2004, 52, 109-116.

    47. [47]

      [47] M. D. Hernandez-Alonso, I. Tejedor-Tejedor, J. M. Coronado, J. Soria, M. A. Anderson, Thin Solid Films, 2006, 502, 125-131.

    48. [48]

      [48] L. Kokporka, S. Onsuratoom, T. Puangpetch, S. Chavadej, Mater. Sci. Semicond. Process, 2013, 16, 667-678.

    49. [49]

      [49] B. Neppolian, Q. Wang, H. Yamashita, H. Choi, Appl. Catal. A, 2007, 333, 264-271.

    50. [50]

      [50] J. C. Wu, C. S. Chung, C. L. Ay, I. K. Wang, J. Catal., 1984, 87, 98-107.

    51. [51]

      [51] Y. Xu, C. H. Langford, J. Phys. Chem., 1995, 99, 11501-11507.

    52. [52]

      [52] Y. Xu, C. H. Langford, J. Phys. Chem., 1997, 101, 3115-3121.

    53. [53]

      [53] DY. Xu, C. H. Langford, Langmuir, 2001, 17, 897-902.

    54. [54]

      [54] J. Yu, A. Kudo, Adv. Funct. Mater., 2006, 16, 2163-2169.

    55. [55]

      [55] D. L. Liao, B. Q. Liao, J. Photochem. Photobiol. A, 2007, 187, 363-369.

    56. [56]

      [56] J. S. Valente, F. Tzompantzi, J. Prince, J. G. H. Cortez, R. Gomez, Appl. Catal. B, 2009, 90, 330-338.

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    3. [3]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    5. [5]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    13. [13]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    15. [15]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    17. [17]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    18. [18]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(0)
  • Abstract views(390)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return