Citation:
Eda Sinirtas, Meltem Isleyen, Gulin Selda Pozan Soylu. Photocatalytic degradation of 2,4-dichlorophenol with V2O5-TiO2 catalysts: Effect of catalyst support and surfactant additives[J]. Chinese Journal of Catalysis,
;2016, 37(4): 607-615.
doi:
10.1016/S1872-2067(15)61035-X
-
Binary oxide catalysts with various weight percentage V2O5 loadings were prepared by solid-state dispersion and the nanocomposites were modified with surfactants. The catalysts were analyzed using X-ray diffraction, diffuse-reflectance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and N2 adsorption-desorption. The photocatalytic activities of the catalysts were evaluated in the degradation of 2,4-dichlorophenol under ultraviolet irradiation. The photocatalytic activity of 50 wt% V2O5-TiO2 (50V2O5-TiO2) was higher than those of pure V2O5, TiO2, and P25. Interactions between V2O5 and TiO2 affected the photocatalytic efficiencies of the binary oxide catalysts. Cetyltrimethylammonium bromide (CTAB) and hexadecyltrimethylammonium bromide (HTAB) significantly enhanced the efficiency of the 50V2O5-TiO2 catalyst. The highest percentage of 2,4-dichlorophenol degradation (100%) and highest reaction rate (2.22 mg/(L·min)) were obtained in 30 min with the (50V2O5-TiO2)-CTAB catalyst. It is concluded that the addition of a surfactant to the binary oxide significantly enhanced the photocatalytic activity by modifying the optical and electronic properties of V2O5 and TiO2.
-
-
-
[1]
[1] J. Zhang, D. Q. Liu, W. J. Bian, X. H. Chen, Desalination, 2012, 304, 49-56.
-
[2]
[2] L. Ren, J. Zhang, Y. Li, C. L. Zhang, Chem. Eng. J., 2011, 168, 553-561.
-
[3]
[3] B. H. Hameed, I. A. W. Tan, A. L. Ahmad, Chem. Eng. J., 2008, 144, 235-244.
-
[4]
[4] S. G. Chung, Y. S. Chang, J. W. Choi, K. Y. Baek, S. W. Hong, S. T. Yun, S. H. Lee, Chem. Eng. J., 2013, 215, 921-928.
-
[5]
[5] Z. Zhang, Q. H. Shen, N. Cissoko, J. Wo, X. Xu, J. Hazard. Mater., 2010, 182, 252-258.
-
[6]
[6] T. Zhou, Y. Z. Li, T. T. Lim, Sep. Purif. Technol., 2010, 76, 206-214.
-
[7]
[7] A. O. Olaniran, E. O. Igbinosa, Chemosphere, 2011, 83, 1297-1306.
-
[8]
[8] L. Liu, F. Chen, F. Yang, Y. Chen, J. Crittenden, Chem. Eng. J., 2012, 181, 189-195.
-
[9]
[9] N. Zhang, M. Q. Yang, S. Q. Liu, Y. G. Sun, Y. J. Xu, Chem. Rev., 2015, 115, 10307-10377.
-
[10]
[10] T. K. Tseng, Y. S. Lin, Y. J. Chen, H. Chu, Int. J. Mol. Sci., 2010, 11, 2336-2361.
-
[11]
[11] F. Ribonia, L. G. Bettini, D. W. Bahnemann, E. Selli, Catal. Today, 2013, 209, 28-34.
-
[12]
[12] X. F. Lei, X. X. Xue, Mater. Sci. Semicond. Process., 2008, 11, 117-121.
-
[13]
[13] H. Liu, T. Xia, H. K. Shon, S. Vigneswaran, J. Ind. Eng. Chem., 2011, 17, 461-467.
-
[14]
[14] L. Li, C. Y. Liu, Y. Liu, Mater. Chem. Phys., 2009, 113, 551-557.
-
[15]
[15] S. Q. Liu, Z. R. Tang, Y. G. Sun, J. C. Colmenares, Y. J. Xu, Chem. Soc. Rev., 2015, 44, 5053-5075.
-
[16]
[16] K. Esumi, S. Nakagawa, T. Yoshımu, J. Jpn Soc. Colour Mater., 2004, 77, 13-18.
-
[17]
[17] Y. Cho, H. Kyung, W. Choi, Appl. Catal. B, 2004, 52, 23-32.
-
[18]
[18] E. O. Scott-Emuakpor, A. Kruth, M. J. Todd, A. Raab, G. I. Paton, D. E. Macphee, Appl. Catal. B, 2012, 123, 433-439.
-
[19]
[19] H. Wang, J. P. Lewis, J. Phys: Condens. Matter, 2005, 17, L209-L213.
-
[20]
[20] C. D. Valentin, G. Pacchioni, A. Selloni, Chem. Mater., 2005, 17, 6656-6665.
-
[21]
[21] L. Li, C. Y. Liu, Y. Liu, Mater. Chem. Phys., 2009, 113, 551-557.
-
[22]
[22] D. E. Gu, B. C. Yang, Y. D. Hu, Catal. Lett., 2007, 118, 254-259.
-
[23]
[23] S. M. Chang, W. S. Liu, Appl. Catal. B, 2011, 101, 333-342.
-
[24]
[24] J. E. Herrera, T. T. Isimjan, I. Abdullahi, A. Ray, S. Rohani, Appl. Catal. A, 2012, 417, 13-18.
-
[25]
[25] L. E. Briand, O. P. Tkachenko, M. Guraya, X. Gao, I. E. Wachs, W. Grunert, J. Phys. Chem. B, 2004, 108, 4823-4830.
-
[26]
[26] T. M. D. Dang, T. M. H. Nguyen, H. P. Nguyen, Adv. Nat. Sci., 2010, 1, 1-10.
-
[27]
[27] K. R. Gota, S. Suresh, Asian J. Chem., 2014, 26, 7087-7101.
-
[28]
[28] C. A. H. Aguilar, T. Pandiyan, J. A. Arenas-Alatorre, N. Singh, Sep. Purif. Technol., 2015, 149, 265-278.
-
[29]
[29] A. Kambur, G. S. Pozan, I. Boz, Appl. Catal. B, 2012, 115, 149-158.
-
[30]
[30] J. G. Yu, B. Wang, Appl. Catal. B, 2010, 94, 295-302.
-
[31]
[31] A. P. Zhang, J. Z. Zhang, Spectrochim. Acta Part A, 2009, 73, 336-341.
-
[32]
[32] V. D. Nithya, R. K. Selvan, C. Sanjeeviraja, D. M. Radheep, S. Arumugam S, Mater. Res. Bull., 2011, 46, 1654-1658.
-
[33]
[33] F. Bai, D. S. Wang, Z. Y. Huo, W. Chen, L. P. Liu, X. Liang, C. Chen, X. Wang, Q. Peng, Y. D. Li, Angew. Chem. Int. Ed., 2007, 46, 6650-6653.
-
[34]
[34] N. Molahasani, M. S. Sadjadi, K. Zare, Int. J. Nano Dimens., 2013, 4, 161-166.
-
[35]
[35] M. Shang, W. Z. Wang, L. Zhou, S. M. Sun, W. Z. Yin, J. Hazard. Mater., 2009, 172, 338-344.
-
[36]
[36] F. Lei, B. Yan, H. H. Chen, Q. Zhang, J. T. Zhao, Cryst. Growth Des., 2009, 9, 3730-3736.
-
[37]
[37] M. Kanna, S. Wongnawa, Mater. Chem. Phys., 2008, 110, 166-175.
-
[38]
[38] G. C. Chen, X. Q. Shan, Y. S. Wang, B. Wen, Z. G. Pei, Y. N. Xie, T. Liu, J. J. Pignatello, Water Res., 2009, 43, 2409-2418.
-
[39]
[39] P. Venkatesan, J. Santhanalakshmi, Nanosci. Nanotechnol., 2011, 1, 43-47.
-
[40]
[40] L. Q. Jing, H. G. Fu, B. Q. Wang, D. J. Wang, B. F. Xin, S. Li, J. Z. Sun, Appl. Catal. B, 2006, 62, 282-291.
-
[41]
[41] Z. Y. Liu, D. D. Sun, P. Guo, J. O. Leckie, Nano Lett., 2007, 7, 1081-1085.
-
[42]
[42] C. Han, M. Q. Yang, N. Zhang, Y. J. Xu, J. Mater. Chem. A, 2014, 2, 19156-19166.
-
[43]
[43] C. Han, Z. Chen, N. Zhang, J. C. Colmenares, Y. J. Xu, Adv. Funct. Mater., 2015, 25, 221-229.
-
[44]
[44] H. Benhebal, M. Chai, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, B. Heinrichs, Alexandria Eng. J., 2013, 52, 517-523.
-
[45]
[45] J. B. Zhong, J. Z. Li, Z. H. Xiao, W. Hu, X. B. Zhou, X. W. Zheng, Mater. Lett., 2012, 91, 301-303.
-
[46]
[46] W. F. Yao, X. H. Xiao, H. Wang, J. T. Zhou, X. N. Yang, Y. Zhang, S. X. Shang, B. B. Huang, Appl. Catal. B, 2004, 52, 109-116.
-
[47]
[47] M. D. Hernandez-Alonso, I. Tejedor-Tejedor, J. M. Coronado, J. Soria, M. A. Anderson, Thin Solid Films, 2006, 502, 125-131.
-
[48]
[48] L. Kokporka, S. Onsuratoom, T. Puangpetch, S. Chavadej, Mater. Sci. Semicond. Process, 2013, 16, 667-678.
-
[49]
[49] B. Neppolian, Q. Wang, H. Yamashita, H. Choi, Appl. Catal. A, 2007, 333, 264-271.
-
[50]
[50] J. C. Wu, C. S. Chung, C. L. Ay, I. K. Wang, J. Catal., 1984, 87, 98-107.
-
[51]
[51] Y. Xu, C. H. Langford, J. Phys. Chem., 1995, 99, 11501-11507.
-
[52]
[52] Y. Xu, C. H. Langford, J. Phys. Chem., 1997, 101, 3115-3121.
-
[53]
[53] DY. Xu, C. H. Langford, Langmuir, 2001, 17, 897-902.
-
[54]
[54] J. Yu, A. Kudo, Adv. Funct. Mater., 2006, 16, 2163-2169.
-
[55]
[55] D. L. Liao, B. Q. Liao, J. Photochem. Photobiol. A, 2007, 187, 363-369.
-
[56]
[56] J. S. Valente, F. Tzompantzi, J. Prince, J. G. H. Cortez, R. Gomez, Appl. Catal. B, 2009, 90, 330-338.
-
[1]
-
-
-
[1]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[2]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[3]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[4]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[5]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[6]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[7]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
-
[8]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[9]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[10]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[11]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[12]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[13]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[14]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[15]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[16]
Ruolin CHENG , Yue WANG , Xiyao NIU , Huagen LIANG , Ling LIU , Shijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424
-
[17]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[18]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[19]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[20]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(391)
- HTML views(13)