Citation: J. H. Flores, M. E. H. Maia da Costa, M. I. Pais da Silva. Effect of Cu-ZnO-Al2O3 supported on H-ferrierite on hydrocarbons formation from CO hydrogenation[J]. Chinese Journal of Catalysis, ;2016, 37(3): 378-388. doi: 10.1016/S1872-2067(15)61032-4 shu

Effect of Cu-ZnO-Al2O3 supported on H-ferrierite on hydrocarbons formation from CO hydrogenation

  • Corresponding author: M. I. Pais da Silva, 
  • Received Date: 29 October 2015
    Available Online: 9 December 2015

  • Methanol synthesis catalysts based on Cu, Zn and Al were prepared by three methods and subsequently mixed with H-ferrierite zeolite in an aqueous suspension to disperse the catalysts over the support. These materials were characterized by X-ray diffraction, N2 adsorption, transmission electron microscopy, temperature programmed reduction, NH3 and H2 temperature-programmed desorption, and X-ray photoelectron spectroscopy. They were also applied to the CO hydrogenation reaction to produce dimethyl ether and hydrocarbons. The catalysts were prepared by coprecipitation under low and high supersaturation conditions and by a homogeneous precipitation method. The preparation technique was found to affect the precursor structural characteristics, such as purity and crystallinity, as well as the particle size distribution of the resulting catalyst. Low supersaturation conditions favored high dispersion of the Cu species, increasing the methanol synthesis catalyst's metallic surface area and resulting in a homogeneous particle size distribution. These effects in turn were found to modify the zeolite properties, promoting both a low micropore volume and blockage of the zeolite acid sites. The effect of the methanol synthesis catalyst on the reaction was verified by the correlation between the Cu surface area and the CO conversion rate.
  • 加载中
    1. [1]

      [1] E. Iglesia, S. L. Soled, R. A. Fiato, J. Catal., 1992, 137, 212-224.

    2. [2]

      [2] M. E. Dry, Catal. Today, 2002, 71, 227-241.

    3. [3]

      [3] Y. J. Jin, S. Asaoka, X. H. Li, K. Asami, K. Fujimoto, Fuel Process. Technol., 2004, 85, 1151-1164.

    4. [4]

      [4] Q. W. Zhang, X. H. Li, K. Asami, S. Asaoka, K. Fujimoto, Fuel Process. Technol., 2004, 85, 1139-1150.

    5. [5]

      [5] Q. J. Ge, X. H. Li, H. Kaneko, Fujimoto K., J. Mol. Catal. A, 2007, 278, 215-219.

    6. [6]

      [6] Q. W. Zhang, X. H. Li, K. Asami, S. Asaoka, K. Fujimoto, Catal. Lett., 2005, 102, 51-55.

    7. [7]

      [7] Q. W. Zhang, X. H. Li, K. Asami, S. Asaoka, K. Fujimoto, Catal. Today, 2005, 104, 30-36.

    8. [8]

      [8] Q. J. Ge, Y. Lian, X. D. Yuan, X. H. Li, K. Fujimoto, Catal. Commun., 2008, 9, 256-261.

    9. [9]

      [9] S. H. Kang, J. W. Bae, K. W. Jun, H. S. Potdar, Catal. Commun., 2008, 9, 2035-2039.

    10. [10]

      [10] J. W. Bae, S. H. Kang, Y. J. Lee, K. W. Jun, Appl. Catal. B, 2009, 90, 426-435.

    11. [11]

      [11] J. L. Li, X. G. Zhang, T. Inui, Appl. Catal. A, 1996, 147, 23-33.

    12. [12]

      [12] Y. J. Jin, S. Asaoka, X. H. Li, K. Asami, K. Fujimoto, J. Jpn. Petrol. Inst., 2004, 47, 394-402.

    13. [13]

      [13] Y. J. Jin, S. Asaoka, X. H. Li, K. Asami, K. Fujimoto, J. Jpn. Petrol. Inst., 2005, 48, 45-52.

    14. [14]

      [14] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, J. Catal., 2004, 228, 43-55.

    15. [15]

      [15] C. Baltes, S. Vukojevic, F. Schüth, J. Catal., 2008, 258, 334-344.

    16. [16]

      [16] X. R. Zhang, L. C. Wang, C. Z. Yao, Y. G. Cao, W. L. Dai, H. Y. He, K. N. Fan, Catal. Lett., 2005, 102, 83-89.

    17. [17]

      [17] J. P. Shen, C. Song, Catal. Today, 2002, 77, 89-98.

    18. [18]

      [18] J. H. Flores, D. P. B. Peixoto, L. G. Appel, R. R. de Avillez, M. I. P. da Silva, Catal. Today, 2011, 172, 218-225.

    19. [19]

      [19] M. M. V. M. Souza, K. A. Ferreira, O. R. de Macedo Neto, N. F. P. Ribeiro, M. Schmal, Catal. Today, 2008, 133-135, 750-754.

    20. [20]

      [20] M. Behrens, D. Brennecke, F. Girgsdies, S. Kiβner, A. Trunschke, N. Nasrudin, S. Zakaria, N. F. Idris, S. B. A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler, R. Schlögl, Appl. Catal. A, 2011, 392, 93-102.

    21. [21]

      [21] F. Cavani, F. Trifirò, A. Vaccari., Catal Today, 1991, 11, 173-301.

    22. [22]

      [22] G. J. A. A. Soler-Illia, R.J. Candal, A. E. Regazzoni, M. A. Blesa, Chem. Mater., 1997, 9, 184-191.

    23. [23]

      [23] Q. J. Ge, Y. M. Huang, F. Y. Qiu, S. B. Li, Appl. Catal. A, 1998, 167, 23-30.

    24. [24]

      [24] P. S. S. Prasad, J. W. Bae, S. H. Kang, Y J. Lee, K. W. Jun, Fuel Process. Technol., 2008, 89, 1291-1286.

    25. [25]

      [25] J. H. Flores, G. Solorzano, M. I. P. da Silva, Appl. Surf. Sci., 2008, 254, 6461-6466.

    26. [26]

      [26] M. Mühler, L. P. Nielsen, E. Törnqvist, B. S. Clausen, H. Topsoee, Catal. Lett., 1992, 14, 241-249.

    27. [27]

      [27] J. P. Shen, C. Song, Catal. Today, 2002, 77, 89-98.

    28. [28]

      [28] Y. Lwin, M. A. Yarmo, Z. Yaakob, A. B. Mohamad, W. R. W. Daud, Mater. Res. Bull., 2001, 36, 193-198.

    29. [29]

      [29] M. Behrens, I. Kasatkin, S. Kühl, G. Weinberg, Chem. Mater., 2010, 22, 386-397.

    30. [30]

      [30] Y. Okamoto, K. Fukino, T. Imanaka, S. Teranishi. J. Phys. Chem., 1983, 87, 3740-3747.

    31. [31]

      [31] W. L. Dai, Q. Sun, J. F. Deng, D. Wu, Y. H. Sun, Appl. Surf. Sci., 2001, 177, 172-179.

    32. [32]

      [32] G. Moretti, G. Fierro, M. L. O. Jacono, P. Porta, Surf. Interf. Anal., 1989, 14, 325-336.

    33. [33]

      [33] A. A. G. Lima, M. Nele, E. L. Moreno, H. M. C. Andrade, Appl. Catal. A, 1998, 171, 31-43.

    34. [34]

      [34] G. R. Moradi, S. Nosrati, F. Yaripor, Catal. Commun., 2007, 8, 598-606.

    35. [35]

      [35] D. F. Jin, B. Zhu, Z. Y. Hou, J. H. Fei, H. Lou, X. M. Zheng, Fuel, 2007, 86, 2707-2713.

    36. [36]

      [36] S. D. Kim, S. C. Baek, Y. J. Lee, K. W. Jun, M. J. Kim, I. S. Yoo, Appl. Catal. A, 2006, 309, 139-143.

    37. [37]

      [37] X. R. Zhang, L. C. Wang, C. Z. Yao, Y. Cao, W. L. Dai, H. Y. He, K. N. Fan, Catal. Lett., 2005, 102, 183-190.

    38. [38]

      [38] J. Palgunadi, I. Yati, K. D. Jung, Reac. Kinet. Metch. Catal., 2010, 101, 117-128.

    39. [39]

      [39] P. Gao, F. Li, F. K. Xiao, N. Zhao, W. Wei, L. S. Zhong, Y. H. Sun, Catal. Today, 2012, 194, 9-15.

    40. [40]

      [40] P. Gao, F. Li, H. J. Zhan, N. Zhao, F. K. Xiao, W. Wei, L. S. Zhong, H. Wang, Y. H. Sun, J. Catal., 2013, 298, 51-60.

    41. [41]

      [41] P. Gao, R. Xie, H. Wang, L. Zhang, L. Xia, Z. Zhang, W. Wei, Y. Sun, J. CO2 Utilization, 2015, in press.

    42. [42]

      [42] Z. Li, S. W. Yan, M. Fan, Fuel, 2013, 106, 178-186.

    43. [43]

      [43] Z. Li, H. Y. Zheng, K. C. Kie, Chin. J. Catal., 2008, 29, 431-435.

    44. [44]

      [44] G. Fierro, M. Lo Jacono, M. Inversi, P. Porta, R. Lavecchia, F. Cioci, J. Catal., 1994, 148, 709-721.

    45. [45]

      [45] B. Lindström, L. J. Pettersson, P. G. Menon, Appl. Catal. A, 2002, 234, 111-125.

    46. [46]

      [46] U. Constantino, F. Marmottini, M. Nocchetti, R. Vivani, Eur. J. Inorg. Chem., 1998, 1439-1446.

    47. [47]

      [47] M. M. Günter, T. Ressler, R. E. Jentoft, B. Bems, J. Catal., 2001, 203, 133-149.

    48. [48]

      [48] J. Agrell, H. Birgersson, M. Boutonnet, I. Meliàn-Cabrera, R. M. Navarro, J. L. G. Fierro, J. Catal., 2003, 219, 389-403.

    49. [49]

      [49] W. Fu, Z. H. Bao, W. Z. Ding, K. C. Chou, Q. Li, Catal. Commun., 2011, 12, 505-509.

    50. [50]

      [50] Y. Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, Appl. Catal. A, 2002, 223, 137-145.

    51. [51]

      [51] W. R. A. M. Robinson, J. C. Mol, Appl. Catal., 1991, 76, 117-129.

    52. [52]

      [52] K. Fujimoto, H. Kaneko, Q. W. Zhang, Q. J. Ge, X. H. Li, Stud. Surf. Sci. Catal., 2007, 167, 349-354.

    53. [53]

      [53] J. M. Fougerit, N. S. Gnep, M. Guisnet, Microporous Mesoporous Mater., 1999, 29, 79-89.

    54. [54]

      [54] K. Asami, Q. W. Zhang, X. H. Li, S. Asaoka, K. Fujimoto, Stud. Surf. Sci. Catal., 2004, 147, 427-432.

    55. [55]

      [55] Q. J. Ge, T. Tomonobu, K. Fujimoto, X. H. Li, Catal. Commun., 2008, 9, 1775-1778.

    56. [56]

      [56] C. M. Li, K. Fujimoto, Energy Fuels, 2014, 28, 1331-1337.

    57. [57]

      [57] C. M. Li, K. Fujimoto, Catal. Sci. Technol., 2015, 5, 4501-4510.

    58. [58]

      [58] V. M. Mysov, S. I. Reshetnikov, V. G. Stepanov, K. G. Ione, Chem. Eng. J., 2005, 107, 63-71.

  • 加载中
    1. [1]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    3. [3]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    20. [20]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

Metrics
  • PDF Downloads(0)
  • Abstract views(468)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return