Citation: C. Ramakrishna, R. Krishna, T. Gopi, G. Swetha, Bijendra Saini, S. Chandra Shekar, Anchal Srivastava. Complete oxidation of 1,4-dioxane over zeolite-13X-supported Fe catalysts in the presence of air[J]. Chinese Journal of Catalysis, ;2016, 37(2): 240-249. doi: 10.1016/S1872-2067(15)61030-0 shu

Complete oxidation of 1,4-dioxane over zeolite-13X-supported Fe catalysts in the presence of air

  • Corresponding author: C. Ramakrishna, 
  • Received Date: 30 September 2015
    Available Online: 9 December 2015

    Fund Project:

  • Zeolite-13X-supported Fe (Fe/zeolite-13X) catalysts with various Fe contents were prepared by the wet impregnation method. The catalysts were characterized by N2 adsorption-desorption isotherms to estimate the Brunauer-Emmett-Teller surface areas and Barrett-Joyner-Hanlenda pore size distributions. X-ray diffraction, scanning electron microscopy, temperature-programmed reduction, and temperature-programmed desorption of NH3 were used to investigate the textural properties of the Fe/zeolite-13X catalysts. Their catalytic activities were determined for the complete oxidation of 1,4-dioxane using air as the oxidant in a fixed‐bed flow reactor in the temperature range 100-400℃. The influences of various process parameters, such as reaction temperature, metal loading, and gas hourly space velocity (GHSV), on the dioxane removal efficiency by catalytic oxidation were investigated. The stability of the catalyst was tested at 400℃ by performing time-on-stream analysis for 50 h. The Fe/zeolite-13X catalyst with 6 wt% Fe exhibited the best catalytic activity among the Fe/zeolite-13X catalysts at 400℃ and a GHSV of 24000 h-1, with 97% dioxane conversion and 95% selectivity for the formation of carbon oxides (CO and CO2). Trace amounts (< 3%) of acetaldehyde, ethylene glycol monoformate, ethylene glycol diformate, 1,4-dioxane-2-ol, 1,4-dioxane-2-one, and 2-methoxy-1,3-dioxalane were also formed as degradation products. A plausible degradation mechanism is proposed based on the products identified by GC-MS analysis.
  • 加载中
    1. [1]

      [1] National Priorities List sites identified by the EPA, 821, 1518.

    2. [2]

      [2] K. R. Smith, Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13286-13293.

    3. [3]

      [3] S. Budavari, M. J. Neil, A. Smith, P. E. Heckelman, J. F. Kinneary, The Merck Index, 12th ed., Merck & Co., Inc. Whitehouse Station, NJ, 1996.

    4. [4]

      [4] National Industrial Chemicals Notification and Assessment Scheme (NICNAS), 1,4-Dioxane Priority Existing Chemical No-7, Full Public Report, Common Wealth of Australia, 1998.

    5. [5]

      [5] T. Sandy, C. P. Grady Jr., S. Meininger, R. Boe, Annual Industrial Wastes Technical and Regulatory Conference, Conference Proceeding 7th, Charleston, SC, USA, 2001, 88-117.

    6. [6]

      [6] R. Alnaizy, A. Akgerman, Adv. Environ. Res., 2000, 4, 233-244.

    7. [7]

      [7] M. J. Zenker, R. C. Borden, M. A. Barlaz, Environ. Eng. Sci., 2003, 20, 423-432.

    8. [8]

      [8] U.S. Department of Health and Human Services, Seventh Annual Report on Carcinogens, 1994, PB95-109781, 186.

    9. [9]

      [9] S. Mahendra, C. J. Petzold, E. E. Baidoo, J. D. Keasling, L. Alvarez-Cohen, Environ. Sci. Technol., 2007, 41, 7330-7336.

    10. [10]

      [10] S. L. Kelley, E. W. Aitchison, M. Deshpande, J. L. Schnoor, P. J. J. Alvarez, Water Res., 2001, 35, 3791-3800.

    11. [11]

      [11] S. Hand, B. X. Wang, K. H. Chu, Sci. Total Environ., 2015, 520, 154-159.

    12. [12]

      [12] C. D. Adams, P. A. Scanlan, N. D. Secrist, Environ. Sci. Technol., 1994, 28, 1812-1818.

    13. [13]

      [13] S. C. Kwon, J. Y. Kim, S. M. Yoon, W. Bae, K. S. Kang, Y. W. Rhee, J. Ind. Eng. Chem., 2012, 18, 1951-1955.

    14. [14]

      [14] M. A. Beckett, I. Hua, Water Res., 2003, 37, 2372-2376.

    15. [15]

      [15] V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Chemosphere, 1997, 35, 2675-2688.

    16. [16]

      [16] R. R. Hill, G. E. Jeffs, D. R. Roberts, J. Photochem. Photobiol. A, 1997, 108, 55-58.

    17. [17]

      [17] H. M. Coleman, V. Vimonses, G. Leslie, R. Amal, J. Hazard. Mater., 2007, 146, 496-501.

    18. [18]

      [18] B. K. Min, J. E. Heo, N. K. Youn, O. S. Joo, H. Lee, J. H. Kim, H. S. Kim, Catal. Commun., 2009, 10, 712-715.

    19. [19]

      [19] K. C. Lee, H. J. Beak, K. H. Choo, Water Res., 2015, 86, 58-65.

    20. [20]

      [20] H. C. Wang, H. S. Liang, M. B. Chang, J. Hazard. Mater., 2011, 186, 1781-1787.

    21. [21]

      [21] C. B. Almquist, E. Sahle-Demessie, S. C. Shekar, J. Sowash, Environ. Sci. Technol., 2007, 41, 4754-4760.

    22. [22]

      [22] H. Finaga, S. Futamura, J. Catal., 2004, 227, 304-312.

    23. [23]

      [23] M. Iwasaki, M. Hara, S. Ito, J. Mater. Sci. Lett., 1998, 17, 1769-1771.

    24. [24]

      [24] P. V. Kumar, D. Meisel, Curr. Opin. Colloid. Inerface Sci., 2006, 7, 13920-13925.

    25. [25]

      [25] D. M. Huang, D. B. Cao, Y. W. Li, H. J. Jiao, J. Phys. Chem. B, 2006, 110, 13920-13925.

    26. [26]

      [26] O. Shekhah, W. Ranke, A. Schule, G. Kolios, R. Schlogl, Angew. Chem. Int. Ed., 2003, 42, 5760-5763.

    27. [27]

      [27] A. N. Pour, S. Taghipoor, M. Shekarriz, S. M. K. Shahri, Y. Zamani, J. Nanosci. Nanotechnol., 2009, 9, 4425-4429.

    28. [28]

      [28] A. N. Pour, M. R. Housaindokht, S. F. Tayyari, J. Zarkesh, J. Nat. Gas. Chem., 2010, 19, 284-292.

    29. [29]

      [29] S. Eriksson, U. Nylen, S. Rojas, M. Boutonnet, Appl. Catal. A, 2004, 265, 207-219.

    30. [30]

      [30] L. F. Chen, K. K. Zhu, L. H. Bi, A. Suchopar, M. Reicke, G. Mathys, H. Jaensch, U. Kortz, R. M. Richards, Inorg. Chem., 2007, 46, 8457-8459.

    31. [31]

      [31] D. Habibi, A. R. Faraji, M. Arshadi, J. L. G. Fierro, J. Mol. Catal. A, 2013, 372, 90-99.

    32. [32]

      [32] F. Battin, G. Scacchi, F. Baronnet, Int. J. Chem. Kinet., 1991, 23, 861-879.

    33. [33]

      [33] M. M. J. Treacy, J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, 4th ed., 2001, 152-153.

    34. [34]

      [34] S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, 2004, ISBN 1402023022.

    35. [35]

      [35] J. Okal, M. Zawadzki, L. Kepinski, L. Krajczyki, W. Tylus, Appl. Catal. A, 2007, 319, 202-209.

    36. [36]

      [36] W. Q. Yu, B. S. Wu, J. Xu, Z. C. Tao, H. W. Xiang, Y. W. Li, Catal. Lett., 2008, 125, 116-122.

    37. [37]

      [37] J. H. Ma, B. B. Fan, R. F. Li, J. H. Cao, Catal. Lett., 1994, 23, 189-194.

    38. [38]

      [38] G. Munteanu, L. Ilieva, D. Andreeva, Thermochim. Acta, 1997, 291, 171-177.

    39. [39]

      [39] K. C. Wu, Y. L. Tung, Y. L. Chen, Y. W. Chen, Appl. Catal. B, 2004, 53, 111-116.

    40. [40]

      [40] G. W. Chen, S. L. Li, F. J. Jiao, Q. Yuan, Catal. Today, 2007, 125, 111-119.

    41. [41]

      [41] S. C. Shekar, K. Soni, R. Bunkar, M. Sharma, B. Singh, A. Nigam, T. Mahato, R. Vijayaraghavan, Catal. Commun., 2009, 11, 77-81.

    42. [42]

      [42] V. G. Devulapelli, E. Sahle-Demessie, Appl. Catal. A, 2008, 348, 86-93.

    43. [43]

      [43] H. Barndõk, D. Hermosilla, C. Han, D. D. Dionysiou, C. Negroa, A. Blanco, Appl. Catal. B, 2016, 180, 44-52.

    44. [44]

      [44] N. Merayo, D. Hermosilla, L. Cortijo, A. Blanco, J. Hazard. Mater., 2014, 268, 102-109.

    45. [45]

      [45] K. C. Soni, S. C. Shekar, B. Singh, T. Gopi, J. Colloid Interface Sci., 2015, 446, 226-236.

    46. [46]

      [46] M. I. Stefan, J. R. Bolton, Environ. Sci. Technol., 1998, 32, 1588-1595.

    47. [47]

      [47] H. J. Wang, B. Bakheet, S. Yuan, X. Li, G. Yu, S. Murayama, Y. J. Wang, J. Hazard. Mater., 2015, 294, 90-98.

    48. [48]

      [48] V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Chemosphere, 1997, 35, 2675-2688.

    49. [49]

      [49] H. Barndõk, L. Cortijo, D. Hermosilla, C. Negro, A. Blanco, J. Hazard. Mater., 2014, 280, 340-347.

    50. [50]

      [50] H. S. Kim, B. H. Kwon, S. J. Yoa, I. K. Kim, J. Chem. Eng. Jpn., 2008, 41, 829-835.

  • 加载中
    1. [1]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    2. [2]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    3. [3]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    4. [4]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    5. [5]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    6. [6]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    7. [7]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    8. [8]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    9. [9]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    10. [10]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    11. [11]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    12. [12]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    13. [13]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    14. [14]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    15. [15]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(0)
  • Abstract views(633)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return