Citation:
C. Ramakrishna, R. Krishna, T. Gopi, G. Swetha, Bijendra Saini, S. Chandra Shekar, Anchal Srivastava. Complete oxidation of 1,4-dioxane over zeolite-13X-supported Fe catalysts in the presence of air[J]. Chinese Journal of Catalysis,
;2016, 37(2): 240-249.
doi:
10.1016/S1872-2067(15)61030-0
-
Zeolite-13X-supported Fe (Fe/zeolite-13X) catalysts with various Fe contents were prepared by the wet impregnation method. The catalysts were characterized by N2 adsorption-desorption isotherms to estimate the Brunauer-Emmett-Teller surface areas and Barrett-Joyner-Hanlenda pore size distributions. X-ray diffraction, scanning electron microscopy, temperature-programmed reduction, and temperature-programmed desorption of NH3 were used to investigate the textural properties of the Fe/zeolite-13X catalysts. Their catalytic activities were determined for the complete oxidation of 1,4-dioxane using air as the oxidant in a fixed‐bed flow reactor in the temperature range 100-400℃. The influences of various process parameters, such as reaction temperature, metal loading, and gas hourly space velocity (GHSV), on the dioxane removal efficiency by catalytic oxidation were investigated. The stability of the catalyst was tested at 400℃ by performing time-on-stream analysis for 50 h. The Fe/zeolite-13X catalyst with 6 wt% Fe exhibited the best catalytic activity among the Fe/zeolite-13X catalysts at 400℃ and a GHSV of 24000 h-1, with 97% dioxane conversion and 95% selectivity for the formation of carbon oxides (CO and CO2). Trace amounts (< 3%) of acetaldehyde, ethylene glycol monoformate, ethylene glycol diformate, 1,4-dioxane-2-ol, 1,4-dioxane-2-one, and 2-methoxy-1,3-dioxalane were also formed as degradation products. A plausible degradation mechanism is proposed based on the products identified by GC-MS analysis.
-
-
-
[1]
[1] National Priorities List sites identified by the EPA, 821, 1518.
-
[2]
[2] K. R. Smith, Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13286-13293.
-
[3]
[3] S. Budavari, M. J. Neil, A. Smith, P. E. Heckelman, J. F. Kinneary, The Merck Index, 12th ed., Merck & Co., Inc. Whitehouse Station, NJ, 1996.
-
[4]
[4] National Industrial Chemicals Notification and Assessment Scheme (NICNAS), 1,4-Dioxane Priority Existing Chemical No-7, Full Public Report, Common Wealth of Australia, 1998.
-
[5]
[5] T. Sandy, C. P. Grady Jr., S. Meininger, R. Boe, Annual Industrial Wastes Technical and Regulatory Conference, Conference Proceeding 7th, Charleston, SC, USA, 2001, 88-117.
-
[6]
[6] R. Alnaizy, A. Akgerman, Adv. Environ. Res., 2000, 4, 233-244.
-
[7]
[7] M. J. Zenker, R. C. Borden, M. A. Barlaz, Environ. Eng. Sci., 2003, 20, 423-432.
-
[8]
[8] U.S. Department of Health and Human Services, Seventh Annual Report on Carcinogens, 1994, PB95-109781, 186.
-
[9]
[9] S. Mahendra, C. J. Petzold, E. E. Baidoo, J. D. Keasling, L. Alvarez-Cohen, Environ. Sci. Technol., 2007, 41, 7330-7336.
-
[10]
[10] S. L. Kelley, E. W. Aitchison, M. Deshpande, J. L. Schnoor, P. J. J. Alvarez, Water Res., 2001, 35, 3791-3800.
-
[11]
[11] S. Hand, B. X. Wang, K. H. Chu, Sci. Total Environ., 2015, 520, 154-159.
-
[12]
[12] C. D. Adams, P. A. Scanlan, N. D. Secrist, Environ. Sci. Technol., 1994, 28, 1812-1818.
-
[13]
[13] S. C. Kwon, J. Y. Kim, S. M. Yoon, W. Bae, K. S. Kang, Y. W. Rhee, J. Ind. Eng. Chem., 2012, 18, 1951-1955.
-
[14]
[14] M. A. Beckett, I. Hua, Water Res., 2003, 37, 2372-2376.
-
[15]
[15] V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Chemosphere, 1997, 35, 2675-2688.
-
[16]
[16] R. R. Hill, G. E. Jeffs, D. R. Roberts, J. Photochem. Photobiol. A, 1997, 108, 55-58.
-
[17]
[17] H. M. Coleman, V. Vimonses, G. Leslie, R. Amal, J. Hazard. Mater., 2007, 146, 496-501.
-
[18]
[18] B. K. Min, J. E. Heo, N. K. Youn, O. S. Joo, H. Lee, J. H. Kim, H. S. Kim, Catal. Commun., 2009, 10, 712-715.
-
[19]
[19] K. C. Lee, H. J. Beak, K. H. Choo, Water Res., 2015, 86, 58-65.
-
[20]
[20] H. C. Wang, H. S. Liang, M. B. Chang, J. Hazard. Mater., 2011, 186, 1781-1787.
-
[21]
[21] C. B. Almquist, E. Sahle-Demessie, S. C. Shekar, J. Sowash, Environ. Sci. Technol., 2007, 41, 4754-4760.
-
[22]
[22] H. Finaga, S. Futamura, J. Catal., 2004, 227, 304-312.
-
[23]
[23] M. Iwasaki, M. Hara, S. Ito, J. Mater. Sci. Lett., 1998, 17, 1769-1771.
-
[24]
[24] P. V. Kumar, D. Meisel, Curr. Opin. Colloid. Inerface Sci., 2006, 7, 13920-13925.
-
[25]
[25] D. M. Huang, D. B. Cao, Y. W. Li, H. J. Jiao, J. Phys. Chem. B, 2006, 110, 13920-13925.
-
[26]
[26] O. Shekhah, W. Ranke, A. Schule, G. Kolios, R. Schlogl, Angew. Chem. Int. Ed., 2003, 42, 5760-5763.
-
[27]
[27] A. N. Pour, S. Taghipoor, M. Shekarriz, S. M. K. Shahri, Y. Zamani, J. Nanosci. Nanotechnol., 2009, 9, 4425-4429.
-
[28]
[28] A. N. Pour, M. R. Housaindokht, S. F. Tayyari, J. Zarkesh, J. Nat. Gas. Chem., 2010, 19, 284-292.
-
[29]
[29] S. Eriksson, U. Nylen, S. Rojas, M. Boutonnet, Appl. Catal. A, 2004, 265, 207-219.
-
[30]
[30] L. F. Chen, K. K. Zhu, L. H. Bi, A. Suchopar, M. Reicke, G. Mathys, H. Jaensch, U. Kortz, R. M. Richards, Inorg. Chem., 2007, 46, 8457-8459.
-
[31]
[31] D. Habibi, A. R. Faraji, M. Arshadi, J. L. G. Fierro, J. Mol. Catal. A, 2013, 372, 90-99.
-
[32]
[32] F. Battin, G. Scacchi, F. Baronnet, Int. J. Chem. Kinet., 1991, 23, 861-879.
-
[33]
[33] M. M. J. Treacy, J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, 4th ed., 2001, 152-153.
-
[34]
[34] S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, 2004, ISBN 1402023022.
-
[35]
[35] J. Okal, M. Zawadzki, L. Kepinski, L. Krajczyki, W. Tylus, Appl. Catal. A, 2007, 319, 202-209.
-
[36]
[36] W. Q. Yu, B. S. Wu, J. Xu, Z. C. Tao, H. W. Xiang, Y. W. Li, Catal. Lett., 2008, 125, 116-122.
-
[37]
[37] J. H. Ma, B. B. Fan, R. F. Li, J. H. Cao, Catal. Lett., 1994, 23, 189-194.
-
[38]
[38] G. Munteanu, L. Ilieva, D. Andreeva, Thermochim. Acta, 1997, 291, 171-177.
-
[39]
[39] K. C. Wu, Y. L. Tung, Y. L. Chen, Y. W. Chen, Appl. Catal. B, 2004, 53, 111-116.
-
[40]
[40] G. W. Chen, S. L. Li, F. J. Jiao, Q. Yuan, Catal. Today, 2007, 125, 111-119.
-
[41]
[41] S. C. Shekar, K. Soni, R. Bunkar, M. Sharma, B. Singh, A. Nigam, T. Mahato, R. Vijayaraghavan, Catal. Commun., 2009, 11, 77-81.
-
[42]
[42] V. G. Devulapelli, E. Sahle-Demessie, Appl. Catal. A, 2008, 348, 86-93.
-
[43]
[43] H. Barndõk, D. Hermosilla, C. Han, D. D. Dionysiou, C. Negroa, A. Blanco, Appl. Catal. B, 2016, 180, 44-52.
-
[44]
[44] N. Merayo, D. Hermosilla, L. Cortijo, A. Blanco, J. Hazard. Mater., 2014, 268, 102-109.
-
[45]
[45] K. C. Soni, S. C. Shekar, B. Singh, T. Gopi, J. Colloid Interface Sci., 2015, 446, 226-236.
-
[46]
[46] M. I. Stefan, J. R. Bolton, Environ. Sci. Technol., 1998, 32, 1588-1595.
-
[47]
[47] H. J. Wang, B. Bakheet, S. Yuan, X. Li, G. Yu, S. Murayama, Y. J. Wang, J. Hazard. Mater., 2015, 294, 90-98.
-
[48]
[48] V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Chemosphere, 1997, 35, 2675-2688.
-
[49]
[49] H. Barndõk, L. Cortijo, D. Hermosilla, C. Negro, A. Blanco, J. Hazard. Mater., 2014, 280, 340-347.
-
[50]
[50] H. S. Kim, B. H. Kwon, S. J. Yoa, I. K. Kim, J. Chem. Eng. Jpn., 2008, 41, 829-835.
-
[1]
-
-
-
[1]
Lijuan Liu , Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060
-
[2]
Wenke ZHENG , Ce LIU , Wei CHEN , Hongshan KE , Fanlong ZENG , Yibo LEI , Anyang LI , Wenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095
-
[3]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[4]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[5]
Menglan Wei , Xiaoxia Ou , Yimeng Wang , Mengyuan Zhang , Fei Teng , Kaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105
-
[6]
Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148
-
[7]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[8]
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050
-
[9]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
-
[10]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012
-
[11]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[12]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[13]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[14]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[15]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[16]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[17]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[18]
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
-
[19]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[20]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(634)
- HTML views(67)