Citation: Lingling Fu, Yijuan Lu, Zhigang Liu, Runliang Zhu. Influence of the metal sites of M-N-C (M = Co, Fe, Mn) catalysts derived from metalloporphyrins in ethylbenzene oxidation[J]. Chinese Journal of Catalysis, ;2016, 37(3): 398-404. doi: 10.1016/S1872-2067(15)61029-4 shu

Influence of the metal sites of M-N-C (M = Co, Fe, Mn) catalysts derived from metalloporphyrins in ethylbenzene oxidation

  • Corresponding author: Zhigang Liu, 
  • Received Date: 15 October 2015
    Available Online: 24 November 2015

    Fund Project: 国家自然科学基金(21103045,1210040,1103312) (21103045,1210040,1103312)中国石油大学重质油国家重点实验室(SKCHOP201504) (SKCHOP201504)中国科学院广州地球与化学研究所中国科学院矿物学与成矿学重点实验室(KLMM20150103). (KLMM20150103)

  • Transition metal catalysts M-N-C (M = Co, Fe, Mn) were synthesized by a template-free method by heating meso-tetraphenyl porphyrins (i.e. CoTPP, FeTPPCl, MnTPPCl) precursors. The catalysts were characterized by N2 adsorption-desorption, thermogravimetry, high-resolution transmission electron microscopy, and Raman and X-ray photoelectron spectroscopy. The selective oxidation of ethylbenzene with molecular oxygen under a solvent-free condition was carried out to explore the catalytic performance of the M-N-Cs, which exhibited different catalytic performance. That was ascribed to the difference in M (Co, Fe, Mn) and different graphitization degree forming during the heating process, in which M (Co, Fe, Mn) might have different catalytic activity on the formation of the M-N-C catalyst. All the M-N-C composites had remarkable recyclability in the selective oxidation of ethylbenzene.
  • 加载中
    1. [1]

      [1] K. A. Kuttiyiel, Y. M. Choi, S. M. Hwang, G. G. Park, T. H. Yang, D. Su, K. Sasaki, P. Liu, R. R. Adzic, Nano Energy, 2015, 13, 442-449.

    2. [2]

      [2] X. C. Wang, X. R. Liu, Y. Xu, G. M. Peng, Q. Cao, X. D. Mu, Chin. J. Catal., 2015, 36, 1614-1622.

    3. [3]

      [3] J. C. Zhang, J. X. Guo, W. Liu, S. P. Wang, A. R. Xie, X. F. Liu, J. Wang, Y. Z. Yang, Eur. J. Inorg. Chem., 2015, 2015, 969-976.

    4. [4]

      [4] C. Domínguez, F. J. Pérez-Alonso, M. Abdel Salam, J. L. G. de la Fuente, S. A. Al-Thabaiti, S. N. Basahel, M. A. Peña, J. L. G. Fierro, S. Rojas, Int. J. Hydrogen Energy, 2014, 39, 5309-5318.

    5. [5]

      [5] H. Y. Jin, J. Wang, D. F. Su, Z. F. Wei, Z. F. Pang, Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.

    6. [6]

      [6] R. V. Jagadeesh, H. Junge, M. M. Pohl, J. Radnik, A. Brückner, M. Beller, J. Am. Chem. Soc., 2013, 135, 10776-10782.

    7. [7]

      [7] I. Matanovic, S. Babanova, A. Perry III, A. Serov, K. Artyushkovaa, P. Atanassov, Phys. Chem. Chem. Phys., 2015, 17, 13235-13244.

    8. [8]

      [8] J. Masa, W. Xia, I. Sinev, A. Q. Zhao, Z. Y. Sun, S. Grutzke, P. Weide, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed., 2014, 53, 8508-8512.

    9. [9]

      [9] R. Othman, A. L. Dicks, Z. H. Zhu, Int. J. Hydrogen Energy, 2012, 37, 357-372.

    10. [10]

      [10] D. F. Su, J. Wang, H. Y. Jin, Y. T. Gong, M. M. Li, Z. F. Pang, Y. Wang, J. Mater. Chem. A, 2015, 3, 11756-11761.

    11. [11]

      [11] I. Herrmann, U. I. Kramm, S. Fiechter, P. Bogdanoff, Electrochim. Acta, 2009, 54, 4275-4287.

    12. [12]

      [12] S. L. Gojkovic, S. Gupta, R. F. Savinell, Electrochim. Acta, 1999, 45, 889-897.

    13. [13]

      [13] Z. G. Liu, L. T. Ji, X. L. Dong, Z. Li, L. L. Fu, Q. A. Wang, RSC Adv., 2015, 5, 6259-6264.

    14. [14]

      [14] Z. G. Liu, L. T. Ji, J. Liu, L. L. Fu, S. F. Zhao, J. Mol. Catal. A, 2014, 395, 315-321.

    15. [15]

      [15] D. H. Shen, L. T. Ji, Z. G. Liu, W. B. Sheng, C. C. Guo, J. Mol. Catal. A, 2013, 379, 15-20.

    16. [16]

      [16] H. Jin, H. M. Zhang, H. X. Zhong, J. L. Zhang, Energy Environ. Sci., 2011, 4, 3389-3394.

    17. [17]

      [17] L. L. Fu, Y. Chen, Z. G. Liu, J. Mol. Catal. A, 2015, 408, 91-97.

    18. [18]

      [18] A. A. Costa, G. F. Ghesti, J. L. de Macedo, V. S. Braga, M. M. Santos, J. A. Dias, S. C. L. Dias, J. Mol. Catal. A, 2008, 282, 149-157.

    19. [19]

      [19] F. Yang, S. Y. Gao, C. R. Xiong, H. Q. Wang, J. Chen, Y. Kong, Chin. J. Catal., 2015, 36, 1035-1041.

    20. [20]

      [20] Y. J. Gao, G. Hu, J. Zhong, Z. J. Shi, Y. S. Zhu, D. S. Su, J. G. Wang, X. H. Bao, D. Ma, Angew. Chem. Int. Ed., 2013, 52, 2109-2113.

    21. [21]

      [21] Y. L. Li, J. J. Wang, X. F. Li, J. Liu, D. S. Geng, J. L. Yang, Electrochem. Commun., 2011, 13, 668-672.

    22. [22]

      [22] Y. H. Su, Y. H. Zhu, H. L. Jiang, J. H. Shen, X. L. Yang, W. J. Zou, J. D. Chen, C. Z. Li, Nanoscale, 2014, 6, 15080-15089.

    23. [23]

      [23] J. Wang, G. X. Wang, S. Miao, X. L. Jiang, J. Y. Li, X. H. Bao, Carbon, 2014, 75, 381-389.

    24. [24]

      [24] H. S. Oh, H. Kim, J. Power Sources, 2012, 212, 220-225.

    25. [25]

      [25] C. V. Schenck, J. G. Dillard, J. W. Murray, J. Colloid Interface Sci., 1983, 95, 398-409.

    26. [26]

      [26] E. Puello-Polo, J. L. Brito, J. Mol. Catal. A, 2008, 281, 85-92.

    27. [27]

      [27] Y. Chen, S. F. Zhao, Z. G. Liu, Phys. Chem. Chem. Phys., 2015, 17, 14012-14020.

    28. [28]

      [28] Y. Yao, B. Q. Zhang, J. Y. Shi, Q. H. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 7413-7420.

    29. [29]

      [29] L. L. Geng, M. Zhang, W. X. Zhang, M. J. Jia, W. Yan, G. Liu, Catal. Sci. Technol., 2015, 5, 3097-3102.

    30. [30]

      [30] L. L. Geng, X. Y. Zhang, W. X. Zhang, M. J. Jia, G. Liu, Chem. Commun., 2014, 50, 2965-2967.

    31. [31]

      [31] S. Pylypenko, S. Mukherjee, T. S. Olson, P. Atanassov, Electrochim. Acta, 2008, 53, 7875-7883.

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    4. [4]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    16. [16]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    17. [17]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    18. [18]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(0)
  • Abstract views(629)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return