Citation: Qikun Zhang, Junqing Kang, Bing Yang, Leizhen Zhao, Zhaosheng Hou, Bo Tang. Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob[J]. Chinese Journal of Catalysis, ;2016, 37(3): 389-397. doi: 10.1016/S1872-2067(15)61028-2 shu

Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob

  • Corresponding author: Qikun Zhang, 
  • Received Date: 2 December 2015
    Available Online: 8 December 2015

    Fund Project: 国家重点基础研究发展计划(973计划,2013CB933800) (973计划,2013CB933800)山东省自然科学基金(ZR2013EMM004) (ZR2013EMM004)济南市高校自主创新计划(201401245) (201401245)国家级大学生创新训练项目(201410445074). (201410445074)

  • A magnetically recoverable biocatalyst was successfully prepared through the immobilization of cellulase onto Fe3O4 nanoparticles. The magnetic nanoparticles were synthesized by a hydrothermal method in an aqueous system. The support (Fe3O4 nanoparticles) was modified with (3-aminopropyl)triethoxysilane, and glutaraldehyde was used as the cross-linker to immobilize the cellulose onto the modified support. Different factors that influence the activity of the immobilized enzyme were investigated. The experimental results indicated that the suitable immobilization temperature and pH are 40 ℃ and 6.0, respectively. The optimal glutaraldehyde concentration is ~2.0 wt%, and the appropriate immobilization time is 4 h. Under these optimal conditions, the activity of the immobilized enzyme could be maintained at 99.1% of that of the free enzyme. Moreover, after 15 cyclic runs, the activity of the immobilized enzyme was maintained at ~91.1%. The prepared biocatalyst was used to decompose corncobs, and the maximum decomposition rate achieved was 61.94%.
  • 加载中
    1. [1]

      [1] W. L. Xie, N. Ma, Energy Fuels, 2009, 23, 1347-1353.

    2. [2]

      [2] W. J. Goh, V. S. Makam, J. Hu, L. F. Kang, M. R. Zheng, S. L. Yoong, C. N. B. Udalagama, G. Pastorin, Langmuir, 2012, 28, 16864-16873.

    3. [3]

      [3] L. Wang, X. G. Fan, P. Tang, Q. P. Yuan, J. Chem. Technol. Biotechnol., 2013, 88, 2067-2074.

    4. [4]

      [4] S. J. Bao, X. G. Zhang, X. M. Liu, L. Y. Xin, J. P. Qu, Chin. J. Catal., 2003, 24, 909-913.

    5. [5]

      [5] W. S. Lim, J. W. Lee, Bioresour. Technol., 2013, 130, 97-101.

    6. [6]

      [6] A. Karlsson, A. Aspegren, J. Chromatogr. A, 2000, 866, 15-23.

    7. [7]

      [7] E. Cherian, M. Dharmendirakumar, G. Baska, Chin. J. Catal., 2015, 36, 1223-1229.

    8. [8]

      [8] L. Wang, H. Z. Chen. Process Biochem., 2011, 46, 604-607.

    9. [9]

      [9] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, M. Ladisch, Bioresour. Technol., 2005, 96, 673-686.

    10. [10]

      [10] Y. Ping, H. Z. Ling, G. Song, J. P. Ge, Biochem. Eng. J., 2013, 75, 86-91.

    11. [11]

      [11] L. L. Ding, B. Zou, H. Q. Liu, Y. N. Li, Z. C. Wang, Y. Su, Y. P. Guo, X. F. Wang, Chem. Eng. J., 2013, 225, 300-305.

    12. [12]

      [12] P. Obama, G. Ricochon, L. Muniglia, N. Brosse, Bioresour. Technol., 2012, 112, 156-163.

    13. [13]

      [13] Q. K. Zhang, X. T. Han, B. Tang, RSC Adv., 2013, 3, 9924-9931.

    14. [14]

      [14] J. S. Lupoi, E. A. Smith, Biotechnol. Bioeng., 2011, 108, 2835-2843.

    15. [15]

      [15] J. L. Rahikainen, J. D. Evans, S. Mikander, A. Kalliola, T. Puranen, T. Tamminen, K. Marjamaa, K. Kruus, Enzyme Microb. Technol., 2013, 53, 315-321.

    16. [16]

      [16] N. K. Pazarlioǧlu, M. Sariişik, A. Telefoncu, Process Biochem., 2005, 40, 767-771.

    17. [17]

      [17] T. C. Hung, C. C. Fu, C. H. Su, J. Y. Chen, W. T. Wu, Y. S. Lin, Enzyme Microb. Technol., 2011, 49, 30-37.

    18. [18]

      [18] Y. Y. Yu, J. G. Yuan, Q. Wang, X. R. Fan, X. Y. Ni, P. Wang, L. Cui, Carbohyd. Polym., 2013, 95, 675-680.

    19. [19]

      [19] A. A. Gokhale, J. Lu, I. Lee, J. Mol. Catal. B, 2013, 90, 76-86.

    20. [20]

      [20] L. Y. Wang, H. X. Wang, A. J. Wang, M. Liu, Chin. J. Catal., 2009, 30, 939-944.

    21. [21]

      [21] F. Liguori, C. Moreno-Marrodan, P. Barbaro, Chin. J. Catal., 2015, 36, 1157-1169.

    22. [22]

      [22] S. H. Huang, M. H. Liao, D. H. Chen, Biotechnol. Prog., 2003, 19, 1095-1100.

    23. [23]

      [23] G. Zheng, S. Yan. Biotechnol. Prog., 2004, 20, 500-506.

    24. [24]

      [24] F. Lopez-Gallego, L. Betancor, C. Mateo, A. Hidalgo, N. Alonso-Morales, G. Dellamora-Ortiz, J. M. Gaisan, R. Fernandez-Lafuente, J. Biotechnol., 2005, 119, 70-75.

    25. [25]

      [25] O. Barbosa, R. Torres, C. Ortiz, R. Fernandez-Lafuente, Process Biochem., 2012, 47, 1220-1227.

    26. [26]

      [26] Y. H. Dong, Y. Cai, Z. K. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, D. Y. Zhao, J. Am. Chem. Soc., 2010, 132, 8466-8473.

    27. [27]

      [27] S. Laurent, D. Forge, M. Port, A. Roch, C. Robio, L. V. Elst, R. N. Muller, Chem. Rev., 2008, 108, 2064-2110.

    28. [28]

      [28] G. H. Zhao, J. Z. Wang, Y. F. Li, X. Chen, Y. P. Liu, J. Phys. Chem. C, 2011, 115, 6350-6359.

    29. [29]

      [29] R. G. Chaudhuri, S. Paria, Chem. Rev., 2012, 112, 2373-2433.

    30. [30]

      [30] M. Dashtban, M. Maki, K. T. Leung, C. Q. Mao, W. S. Qin, Crit. Rev. Biotechnol., 2010, 30, 302-309.

    31. [31]

      [31] M. Chen, L. M. Xia, P. J. Xue, Int. Biodeter. Biodegr., 2007, 59, 85-89.

    32. [32]

      [32] E. Viola, F. Zimbardi, V. Valerio, F. Nanna, A. Battafarano, Appl. Energy, 2013, 102, 198-203.

    33. [33]

      [33] E. Bahcegul, E. Tatli, N. I. Haykir, S. Apaydin, U. Bakir, Bioresour. Technol., 2011, 102, 9646-9652.

  • 加载中
    1. [1]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    2. [2]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    3. [3]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    4. [4]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    8. [8]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    9. [9]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    10. [10]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    13. [13]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    14. [14]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    17. [17]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    18. [18]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    19. [19]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(1)
  • Abstract views(719)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return