Citation: Huiru Zhao, Shumei Shi, Jinxiong Wu, Yue Ding, Niu Li. Charge compensation dominates the distribution of silica in SAPO-34[J]. Chinese Journal of Catalysis, ;2016, 37(2): 227-233. doi: 10.1016/S1872-2067(15)61025-7 shu

Charge compensation dominates the distribution of silica in SAPO-34

  • Corresponding author: Niu Li, 
  • Received Date: 13 November 2015
    Available Online: 23 November 2015

    Fund Project: 天津市自然科学基金(12JCYBJC 12700). (12JCYBJC 12700)

  • The distribution of Si atoms in the SAPO-34 framework determines its acidity and catalytic effects. This was investigated using the charge balance between the inorganic framework and trapped template ions. Three types of templates, which yielded R+, 2R+ and 2R2+ positive charges in the cages of SAPO-34, were obtained from single crystal data and they were used to direct the synthesis of SAPO-34 with different Si contents and formation of isolated Si atoms and Si islands in the lattice. The concentration limits of SiO2 in the gel for constituting isolated Si atoms were calculated and verified experimentally. Si islands, including 5-Si, 8-Si, 11-Si, 14-Si island were described on the basis of host-guest charge compensation. An overall view of the distribution of Si atoms in SAPO-34 was given and a criterion for the strength and density of acid sites in SAPO-34 for it to be an efficient catalyst for MTO was made available.
  • 加载中
    1. [1]

      [1] U. Olsbye, S. Svelle, M. Bjøgen, P. Beato, T. V. W. Janssens, F. Joensen, S. Bordiga, K. P. Lillerud, Angew. Chem. Int. Ed., 2012, 51, 5810.

    2. [2]

      [2] J. Lefevere, S. Mullens, V. Meynen, J. Van Noyen, Chem. Papers, 2014, 68, 1143.

    3. [3]

      [3] M. Charghand, M. Haghighi, S. Aghamohammadi, Ultrasonics. Sonochem., 2014, 21, 1827.

    4. [4]

      [4] G. Y. Liu, P. Tian, Z. M. Liu, Chin. J. Catal., 2012, 33, 174.

    5. [5]

      [5] M. Guisnet, L. Costa, F. R. Ribeiro, J. Mol. Catal. A, 2009, 305, 69.

    6. [6]

      [6] W. L. Dai, G. J. Wu, N. D. Li, N. J. Guan, M. Hunger, ACS Catal., 2013, 3, 588.

    7. [7]

      [7] T. Álvaro-Muñoz, C. Márquez-Álvarez, E. Sastre, Catal. Today, 2012, 179, 27.

    8. [8]

      [8] J. Z. Li, Y. X. Wei, J. R. Chen, P. Tian, X. Su, S. T. Xu, Y. Qi, Q. Y. Wang, Y. Zhou, Y. L. He, Z. M. Liu, J. Am. Chem. Soc., 2012, 133, 836.

    9. [9]

      [9] S. Askari, R. Halladj, M. Sohrabi, Rev. Adv. Mater. Sci., 2012, 32, 83.

    10. [10]

      [10] B. P. C. Hereijgers, F. Bleken, M. H. Nilsen, S. Svelle, K. P. Lillerud, M. Bjøgen, B. M. Weckhuysen, U. Olsbye, J. Catal., 2009, 264, 77.

    11. [11]

      [11] T. Álvaro-Muñoz, C. Álvarez, E. Sastre, Appl. Catal. A, 2014, 472, 72.

    12. [12]

      [12] D. Chen, K. Moljord, A. Holmen, Microporous Mesoporous Mater., 2012, 164, 239.

    13. [13]

      [13] S. Bordiga, L. Regli, C. Lamberti, A. Zeccina, M. Bjorgen, K. P. Lillerud, J. Phys. Chem. B, 2005, 109, 7724.

    14. [14]

      [14] Z. B. Li, J. Martinez-Triguero, P. Concepción, J. Yu, A. Corma, Phys. Chem. Chem. Phys., 2013, 15, 14670.

    15. [15]

      [15] G. J. Yang, Y. X. Wei, S. T. Xu, J. R. Chen, J. Z. Li, Z. M. Liu, J. H. Yu, R. R. Xu, J. Phys. Chem. C, 2013, 117, 8214.

    16. [16]

      [16] E. Kang, T. Kim, H. Chae, M. Kim, K. Jeong, J. Kim, C. Kim, S. Jeong, J. Nanosci. Nanotechnol., 2013, 13, 7498.

    17. [17]

      [17] L. Wu, Z. Y. Liu, M. H. Qiu, C. G. Yang, L. Xia, X. Liu, Y. H. Sun, React. Kinet. Mech. Catal., 2014, 111, 319.

    18. [18]

      [18] Q. M. Sun, N. Wang, D. Y. Xi, M. Yang, J. H. Yu, Chem. Commun., 2014, 50, 6502.

    19. [19]

      [19] H. Hajfarajollah, S. Askari, R. Halladj, React. Kinet. Mech. Catal., 2014, 111, 723.

    20. [20]

      [20] Q. Y. Qian, J. Ruiz-Martínez, M. Mokhtar, A. M. Asiri, S. A. Al-Thabaiti, S. N. Basahel, B. M. Weckhuyse, ChemCatChem, 2014, 6, 772.

    21. [21]

      [21] N. Nishiyama, M. Kawaguchi, Y. Hirota, D. Van Vu, Y. Egashira, K. Ueyama, Appl. Catal. A, 2009, 362, 193.

    22. [22]

      [22] Y. J. Lee, S. C. Baek, K. W. Jun, Appl. Catal. A, 2007, 329, 130.

    23. [23]

      [23] Q. Y. Qian, J. Ruiz Martínez, M. Mokhtar, A. M. Asiri, S. A. Al-Thabaiti, S. N. Basahel, H. E. Van der Bij, J. Kornatowski, B. M. Weckhuysen, Chem. Eur. J., 2013, 19, 11204.

    24. [24]

      [24] W. L. Dai, N. Li, L. D. Li, N. J. Guan, M. Hunger, Catal. Commun., 2011, 16, 124.

    25. [25]

      [25] W. L. Dai, X. Wang, G. J. Wu, L. D. Li, N. J. Guan, M. Hunger, ChemCatChem, 2012, 4, 1428.

    26. [26]

      [26] G. Y. Liu, P. Tian, Y. Zhang, J. Z. Li, L. Xu, S. H. Meng, Z. M. Liu, Microporous Mesoporous Mater., 2008, 114, 416.

    27. [27]

      [27] H. O. Pastore, S. Coluccia, L. Marchese, Annu. Rev. Mater. Res., 2005, 35, 351.

    28. [28]

      [28] G. V. A. Martins, G. Berlier, C. Bisio, S. Coluccia, H. O. Pastore, L. Marchese, J. Phys. Chem. C, 2008, 112, 7193.

    29. [29]

      [29] E. M. Flanigen, R. L. Patton, S. T. Wilson, Stud. Surf. Sci. Catal., 1988, 37, 13.

    30. [30]

      [30] R. Vomscheid, M. Briend, M. J. Peltre, P. P. Man, D. Barthomeu, J. Phys. Chem., 1994, 98, 9614.

    31. [31]

      [31] M. Salmasi, S. Fatemi, A. T. Najafabadi, J. Ind. Eng. Chem., 2011, 17, 755.

    32. [32]

      [32] G. Sankar, J. K. Wyles, C. R. A. Catlow, Top. Catal., 2003, 24, 1.

    33. [33]

      [33] R. Alexander, N. Khanh, D. Hong, Petrovietnam, 2014, 6, 34.

    34. [34]

      [34] D. Fan, P. Tian, X. Su, Y. Y. Yuan, D. H. Wang, C. Wang, M. Yang, L. Y. Wang, S. T. Xu, Z. M. Liu, J. Mater. Chem. A, 2013, 1, 14206.

    35. [35]

      [35] N. Li, Y. F. Ma, W. B. Kong, N. J. Guan, S. H. Xiang, Microporous Mesoporous Mater., 2008, 115, 356.

    36. [36]

      [36] S. T. Wilson, Stud. Surf. Sci. Catal., 2001, 137, 229.

    37. [37]

      [37] A. Meden, N. Novak, V. Kaučič, Mater. Sci. Forum., 1994, 166-169, 613.

    38. [38]

      [38] Y. Iwase, K. Motokura, T. Koyama, A. Miyaji, T. Baba, Phys. Chem. Chem. Phys., 2009, 11, 9268.

    39. [39]

      [39] H. Van Heyden, S. Mintova, T. Bein, Chem. Mater., 2008, 20, 2956.

    40. [40]

      [40] Y. Ding, N. Li, N. J. Guan, H. G. Wang, H. B. Song, S. H. Xiang, Microporous Mesoporous Mater., 2012, 147, 68.

    41. [41]

      [41] Y. Ding, N. Li, N. J. Guan, S. H. Xiang, Acta Sci. Natura. Univer. Nankai, 2011, 44, 57.

    42. [42]

      [42] H. Zhao, PhD Dissertation, Synthesizing SAPO-34 with the Si Distribution in the Framework Controlled, Nankai University, 2014.

    43. [43]

      [43] D. H. Wang, P. Tian, M. Yang, S. T. Xu, D. Fan, X. Su, Y. Yang, C. Wang, Z. M. Liu, Microporous Mesoporous Mater., 2014, 194, 8.

    44. [44]

      [44] H. J. Chae, I. J. Park, Y. H. Song, K. E. Jeong, C. U. Kim, C. H. Shin, S. Y. Jeong, J. Nanosci. Nanotechnol., 2010, 10, 195.

    45. [45]

      [45] T. Álvaro-Muñoz, C. Márquez-Álvarez, E. Sastre, Catal. Today, 2013, 215, 208.

    46. [46]

      [46] L. P. Ye, F. H. Cao, W. Y. Ying, D. Y. Fang, Q. W. Sun, J. Porous Mater., 2011, 18, 225.

    47. [47]

      [47] M. Salmasi, S. Fatemi, A. Najafabadi, J. Ind. Eng. Chem., 2011, 17, 755.

    48. [48]

      [48] F. M. Shalmani, R. Halladj, S. Askari, Powder Technol., 2012, 221, 395.

    49. [49]

      [49] F. C. Sena, B. F. de Souza, N. C. de Almeida, J. S. Cardoso, L. D. Fernandes, Appl. Catal. A, 2011, 406, 59.

    50. [50]

      [50] S. Aghamohammadi, M. Haghighi, M. Charghand, Mater. Res. Bull, 2014, 50, 462.

    51. [51]

      [51] M. Strauss, G. A. V. Martins, G. Berlier, S. Coluccia, L. O. Marchese, H. O. Pastore, Microporous Mesoporous Mater., 2014, 187, 135.

    52. [52]

      [52] A. H. Zhang, S. L. Sun, Z. J. A. Komon, N. Osterwalder, S. Gadewar, P. Stoimenov, D. J. Auerbach, G. D. Stucky, E. W. McFarland, Phys. Chem. Chem. Phys., 2011, 13, 2550.

    53. [53]

      [53] A. Buchholz, W. Wang, M. Xu, A. Arnold, M. Hunger, Microporous Mesoporous Mater., 2002, 56, 267.

    54. [54]

      [54] M. Derewinski, M. J. Peltre, M. Briend, D. Barthomeuf, P. P. Man, J. Chem. Soc., Faraday Trans., 1993, 89, 1823.

    55. [55]

      [55] M. Zokaie, U. Olsbye, K. P. Lillerud, O. Swang, J. Phys. Chem. C, 2012, 116, 7255.

    56. [56]

      [56] M. G. O'Brien, A. M. Beale, C. R. A. Catlow, B. M. Weckhuysen, J. Am. Chem. Soc., 2006, 128, 11744.

    57. [57]

      [57] L. Xu, A. P. Du, Y. X. Wei, Y. L. Wang, Z. X. Yu, Y. L. He, X. Z. Zhang, Z. M. Liu, Microporous Mesoporous Mater., 2008, 115, 332.

    58. [58]

      [58] A. Izadbakhsh, F. Farhadi, F. Khorasheh, S. Sahebdelfar, M. Asadi, Z. F. Yan, Microporous Mesoporous Mater., 2009, 126, 1.

    59. [59]

      [59] A. M. Prakash, S. Unnikrirhnan, J. Chem. Soc., Faraday Trans., 1994, 90, 2291.

    60. [60]

      [60] H. Kessler, J. Patarin, C. Schott-Darie, Stud. Surf. Sci. Catal., 1994, 85, 75.

    61. [61]

      [61] R. Y. Pei, Z. J. Tian, Y. Wei, K. D. Li, Y. P. Xu, L. Wang, H. J. Ma, Mater. Lett., 2010, 64, 2384.

    62. [62]

      [62] S. Girard, J. D. Gale, C. Mellot-Draznieks, G. Férey, J. Am. Chem. Soc., 2002, 124, 1040.

    63. [63]

      [63] C. G. Wang, J. X. Wu, M. C. Hu, N. Li, N. J. Guan, S. H. Xiang, J. Porous Mater., 2012, 19, 751.

    64. [64]

      [64] J. X. Wu, H. R. Zhao, N. Li, Q. Q. Luo, C. Q. He, N. J. Guan, S. H. Xiang, CrystEngComm, 2012, 14, 8671.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    7. [7]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    8. [8]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    11. [11]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    12. [12]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    13. [13]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    14. [14]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    15. [15]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    18. [18]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    19. [19]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    20. [20]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

Metrics
  • PDF Downloads(2)
  • Abstract views(1005)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return