Citation: Yuanyuan Lu, Guo Liu, Jing Zhang, Zhaochi Feng, Can Li, Zhi Li. Fabrication of a monoclinic/hexagonal junction in WO3 and its enhanced photocatalytic degradation of rhodamine B[J]. Chinese Journal of Catalysis, ;2016, 37(3): 349-358. doi: 10.1016/S1872-2067(15)61023-3 shu

Fabrication of a monoclinic/hexagonal junction in WO3 and its enhanced photocatalytic degradation of rhodamine B

  • Corresponding author: Jing Zhang, 
  • Received Date: 25 November 2015
    Available Online: 27 November 2015

    Fund Project: 国家自然科学基金(21573101) (21573101)辽宁省自然科学基金(2014020107) (2014020107)辽宁省高等学校优秀人才支持计划(LJQ2014041) (LJQ2014041)教育部留学回国人员科研启动基金(教外司留[2013]1792号) (教外司留[2013]1792号)中国科学院北京理化技术研究所光化学转换与光电材料重点实验室和中国科学院大连化学物理研究所催化基础国家重点实验室开放课题(CAS,N-09-06). (CAS,N-09-06)

  • A series of WO3 samples with different crystalline phases were prepared by the thermal decomposition method from ammonium tungstate hydrate. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy, and N2 adsorption-desorption were used to characterize the crystalline phase, morphology, particle size, chemical composition, and surface area of the WO3 samples. The formation of hexagonal (h-WO3) and monoclinic (m-WO3) crystal structures of WO3 at different temperatures or different times was confirmed by XRD. m-WO3 is formed at 600 ℃, while m-WO3 starts to transform into h-WO3 at 800 ℃. However, h-WO3, which forms at 800 ℃, may transform into m-WO3 by increasing the calcination temperature to 1000 ℃. SEM results indicate that m-WO3 particles exhibit a bulky shape with heavy aggregates, while h-WO3 particles exhibit a rod-like shape. Moreover, m-WO3 crystals are sporadically patched on the surface of the h-WO3 rod-like particles, resulting in the exposure of both m-WO3 and h-WO3 on the surface. It is observed that the monoclinic phase (m-WO3)/hexagonal phase (h-WO3) junction was fabricated by tuning the calcination temperature and calcination time. The relative ratios between m-WO3 and h-WO3 in the phase junction can readily be tailored by control of the calcination time. The photocatalytic activities of WO3 with different crystalline phases were evaluated by the photocatalytic degradation of rhodamine B as a model pollutant. A higher photocatalytic activity was observed in the WO3 sample with the m-WO3/h-WO3 junction as compared with the sample with only m-WO3. The improvement of photocatalytic activity can be attributed to the reduction of the electron-hole recombination rate owing to the formation of the phase junction, whose presence has been confirmed by HRTEM and photoluminescence spectra.
  • 加载中
    1. [1]

      [1] C. G. Feng, H. R. Shang, X. Liu, Chin. J. Catal., 2014, 35, 168-174.

    2. [2]

      [2] P. Zhou, J. G. Yu, M. Jaroniec, Adv. Mater., 2014, 26, 4920-4935.

    3. [3]

      [3] H. H. Chen, Y. M. Xu, RSC Adv., 2015, 5, 8108-8113.

    4. [4]

      [4] L. Q. Jing, Z. Wei, G. H. Tian, H. G. Fu, Chem. Soc. Rev., 2013, 42, 9509-9549.

    5. [5]

      [5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science, 2001, 293, 269-271.

    6. [6]

      [6] R. G. Li, Y. X. Weng, X. Zhou, X. L. Wang, Y. Mi, R. F. Chong, H. X. Han, C. Li, Energy Environ. Sci., 2015, 8, 2377-2382.

    7. [7]

      [7] L. Li, M. Krissanasaeranee, S. W. Pattinson, M. Stefik, U. Wiesner, U. Steiner, D. Eder, Chem. Commun., 2010, 46, 7620-7622.

    8. [8]

      [8] K. Jothivenkatachalam, S. Prabhu, A. Nithya, K. Jeganathan, RSC Adv., 2014, 4, 21221-21229.

    9. [9]

      [9] H. L. Zhang, J. Q. Yang, D. Li, W. Guo, Q. Qin, L. J. Zhu, W. J. Zheng, Appl. Surf. Sci., 2014, 305, 274-280.

    10. [10]

      [10] J. J. Liu, S. Q. Han, J. Li, J. Lin, RSC Adv., 2014, 4, 37556-37562.

    11. [11]

      [11] L. Zhu, Z. D. Meng, W. C. Oh, Chin. J. Catal., 2011, 32, 926-932.

    12. [12]

      [12] J. Zhang, Q. Xu, Z. C. Feng, M. J. Li, C. Li, Angew. Chem. Int. Ed., 2008, 47, 1766-1769.

    13. [13]

      [13] J. G. Yu, J. X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc., 2014, 136, 8839-8842.

    14. [14]

      [14] X. Wang, Q. Xu, M. R. Li, S. Shen, X. L. Wang, Y. C. Wang, Z. C. Feng, J. Y. Shi, H. X. Han, C. Li, Angew. Chem. Int. Ed., 2012, 51, 13089-13092.

    15. [15]

      [15] Y. F. Qiu, M. L. Yang, H. B. Fan, Y. Z. Zuo, Y. Y. Shao, Y. J. Xu, X. X. Yang, S. H. Yang, Mater. Lett., 2011, 65, 780-782.

    16. [16]

      [16] Y. Liu, Q. Li, S. A. Gao, J. K. Shang, CrystEngComm, 2014, 16, 7493-7501.

    17. [17]

      [17] X. Liu, F. Y. Wang, Q. Wang, Phys. Chem. Chem. Phys., 2012, 14, 7894-7911.

    18. [18]

      [18] H. D. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Funct. Mater., 2011, 21, 2175-2196.

    19. [19]

      [19] D. B. Hernandez-Uresti, D. Sánchez-Martínez, A. Martínez-de la Cruz, S. Sepúlveda-Guzmán, L. M. Torres-Martínez, Ceram. Int., 2014, 40, 4767-4775.

    20. [20]

      [20] Y. Y. Sun, W. Z. Wang, L. Zhang, Z. J. Zhang, Chem. Eng. J., 2012, 211-212, 161-167.

    21. [21]

      [21] I. Aslam, C. B. Cao, M. Tanveer, W. S. Khan, M. Tahir, M. Abid, F. Idrees, F. K. Butt, Z. Alia, N. Mahmood, New J. Chem., 2014, 38, 5462-5469.

    22. [22]

      [22] M. S. Marashi, J. Vahdati Khaki, S. M. Zebarjad, Int. J. Refract. Met. Hard Mater., 2012, 30, 177-179.

    23. [23]

      [23] E. Luévano-Hipólito, A. Martínez-de la Cruz, Q. L. Yu, H. J. H. Brouwers, Ceram. Int., 2014, 40, 12123-12128.

    24. [24]

      [24] I. M. Szilágyi, J. Madarász, G. Pokol, P. Király, G. Tárkányi, S. Saukko, J. Mizsei, A. L. Tóth, A. Szabó, K. Varga-Josepovits, Chem. Mater., 2008, 20, 4116-4125.

    25. [25]

      [25] E. Lassner, W. D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, New York, 1999.

    26. [26]

      [26] G. Lu, X. Y. Li, Z. P. Qu, Q. D. Zhao, H. Li, Y. Shen, G. H. Chen, Chem. Eng. J., 2010, 159, 242-246.

    27. [27]

      [27] A. H. Yan, C. S. Xie, F. Huang, S. P. Zhang, S. L. Zhang, J. Alloys Compd., 2014, 610, 132-137.

    28. [28]

      [28] S. F. Chen, L. Ji, W. M. Tang, X. L. Fu, Dalton Trans., 2013, 42, 10759-10768.

    29. [29]

      [29] S. Q. Wei, Y. Y. Chen, Y. Y. Ma, Z. C. Shao, J. Mol. Catal. A, 2010, 331, 112-116.

    30. [30]

      [30] R. L. Liu, H. Y. Ye, X. P. Xiong, H. Q. Liu, Mater. Chem. Phys., 2010, 121, 432-439.

    31. [31]

      [31] S. L. Bai, H. Y. Liu, J. H. Sun, Y. Tian, S. Chen, J. L. Song, R. X. Luo, D. Q. Li, A. F. Chen, C. C. Liu, Appl. Surf. Sci., 2015, 338, 61-68.

    32. [32]

      [32] Q. H. Huang, L. S. Wang, M. Wang, J. M. Nan, J. Alloys Compd., 2011, 509, 9901-9905.

    33. [33]

      [33] J. Cao, B. D. Luo, H. L. Lin, B. Y. Xu, S. F. Chen, Appl. Catal. B, 2012, 111-112, 288-296.

    34. [34]

      [34] W. J. Li, D. Z. Li, Y. M. Lin, P. X. Wang, W. Chen, X. Z. Fu, Y. Shao, J. Phys. Chem. C, 2012, 116, 3552-3560.

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    6. [6]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    7. [7]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    12. [12]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    13. [13]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    14. [14]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    15. [15]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    20. [20]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

Metrics
  • PDF Downloads(0)
  • Abstract views(1421)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return