Citation: Da Yang, Dongliang Wang, Huan Liu, Xiaoli Zhao, Yong Lu, Shijun Lai, Ye Liu. Ionic palladium complex as an efficient and recyclable catalyst for the carbonylative Sonogashira reaction[J]. Chinese Journal of Catalysis, ;2016, 37(3): 405-411. doi: 10.1016/S1872-2067(15)61022-1 shu

Ionic palladium complex as an efficient and recyclable catalyst for the carbonylative Sonogashira reaction

  • Corresponding author: Shijun Lai,  Ye Liu, 
  • Received Date: 2 November 2015
    Available Online: 23 November 2015

    Fund Project: 国家自然科学基金(21473058,21273077). (21473058,21273077)

  • The neutral palladium(II) complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-imidazolyl] dichloropalladium(II) (1A) ligated by thiazolylimidazolyl-based phosphine (L1) in which thiazolylimidazolyl acted as an S-and N-donor provider with weak coordinating nature, and the ionic complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-3-methylimidazolium] dichloropalladium(II) trifluoromethanesulfonate (2A) ligated by thiazolylimidazolium-based phosphine (L2) after quaternization of L1 using methyl trifluoromethanesulphonate were synthesized. It was found that the introduced positive charges and strong electron-withdrawing effect in 2A not only led to changes in the configuration and structural stability of the complex, but also lowered its catalytic performance in carbonylative Sonogashira reactions. These effects reveal the important role of the N-donor in 1A. In addition, as an ionic palladium complex, 2A combined with the room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate could be recycled eight times as the catalyst in carbonylative Sonogashira reactions without detectable metal leaching.
  • 加载中
    1. [1]

      [1] A. S. Karpov, E. Merkul, F. Rominger, T. J. J. Müller, Angew. Chem. Int. Ed., 2005, 44, 6951-6956.

    2. [2]

      [2] C. J. Forsyth, J. Y. Xu, S. T. Nguyen, I. A. Samdal, L. R. Briggs, T. Rundberget, M. Sandvik, C. O. Miles, J. Am. Chem. Soc., 2006, 128, 15114-15116

    3. [3]

      [3] L. F. Tietze, R. R. Singidi, K. M. Gericke, H. Bockemeier, H. Laatsch, Eur. J. Org. Chem., 2007, 5875-5878.

    4. [4]

      [4] Z. L. Li, J. H. Liu, Z. W. Huang, Y. Yang, C. G. Xia, F. W. Li, ACS Catal., 2013, 3, 839-845.

    5. [5]

      [5] D. A. Alonso, C. Nájera, M. C. Pacheco, J. Org. Chem., 2004, 69, 1615-1619.

    6. [6]

      [6] B. M. Wang, M. Bonin, L. Micouin, J. Org. Chem., 2005, 70, 6126-6128.

    7. [7]

      [7] L. Chen, C. J. Li, Org. Lett., 2004, 6, 3151-3153.

    8. [8]

      [8] K. Y. Lee, M. J. Lee, J. N. Kim, Tetrahedron, 2005, 61, 8705-8710.

    9. [9]

      [9] S. J. Yim, C. H. Kwon, D. K. An, Tetrahedron Lett., 2007, 48, 5393-5395.

    10. [10]

      [10] T. Kobayashi, M. Tanaka, J. Chem. Soc., Chem. Commun., 1981, 333-334.

    11. [11]

      [11] X. F. Wu, H. Neumann, M. Beller, Chem. Soc. Rev., 2011, 40, 4986-5009.

    12. [12]

      [12] C. H. Bai, S. P. Jian, X. F. Yao, Y. W. Li, Catal. Sci. Technol., 2014, 4, 3261-3267.

    13. [13]

      [13] Md. T. Rahman, T. Fukuyama, N. Kamata, M. Sato, I. Ryu, Chem. Commun., 2006, 2236-2238.

    14. [14]

      [14] W. Y. Hao, J. C. Sha, S. R. Sheng, M. Z. Cai, J. Mol. Catal. A, 2009, 298, 94-98.

    15. [15]

      [15] P. Braunstein, F. Naud, Angew. Chem. Int. Ed., 2001, 40, 680-699.

    16. [16]

      [16] C. R. R Gan, Z. L. Liu, S. Q. Bai, K. S Ong, T. S. A. Hor, Dalton Trans., 2014, 43, 1821-1828.

    17. [17]

      [17] S. Yokota, K. Tsujimoto, S. Hayashi, F. Pointillart, L. Ouahab, H. Fujiwara, Inorg. Chem., 2013, 52, 6543-6550.

    18. [18]

      [18] C. W. Machan, A. M. Lifschitz, C. L. Stern, A. A. Sarjeant, C. A. Mirkin, Angew. Chem. Int. Ed., 2012, 51, 1469-1472.

    19. [19]

      [19] R. Lindner, B. van den Bosch, M. Lutz, J. N. H. Reek, J. I. van der Vlugt, Organometallics, 2011, 30, 499-510.

    20. [20]

      [20] R. Grigg, S. P. Mutton, Tetrahedron, 2010, 66, 5515-5548.

    21. [21]

      [21] A. Brennführer, H. Neumann, M. Beller, Angew. Chem. Int. Ed., 2009, 48, 4114-4133.

    22. [22]

      [22] J. R. Harjani, T. J. Abraham, A. T. Gomez, M. T. Garcia, R. D. Singer, P. J. Scammells, Green Chem., 2010, 12, 650-655.

    23. [23]

      [23] T. E. Kunene, P. B. Webb, D. J. Cole-Hamilton, Green Chem., 2011, 13, 1476-1481.

    24. [24]

      [24] C. Kolbeck, N. Paape, T. Cremer, P. S. Schulz, F. Maier, H. P. Steinrueck, P. Wasserscheid, Chem. Eur. J., 2010, 16, 12083-12087.

    25. [25]

      [25] P. Wasserscheid, H. Waffenschmidt, P. Machnitzki, K. W. Kottsieper, O. Stelzer, Chem. Commun., 2001, 451-452.

    26. [26]

      [26] R. P. J. Bronger, S. M. Silva, P. C. J. Kamer, P. W. N. M. van Leeuwen, Chem. Commun., 2002, 3044-3045.

    27. [27]

      [27] J. Zhang, Y. Y. Wang, X. L. Zhao, Y. Liu, Eur. J. Inorg. Chem., 2014, 975-985.

    28. [28]

      [28] Y. Canac, N. Debono, C. Lepetit, C. Duhayon, R. Chauvin, Inorg. Chem., 2011, 50, 10810-10819.

    29. [29]

      [29] S. J. Lai, Y. Q. Li, H. Zhang, X. L. Zhao, Y. Liu, Catal. Commun., 2015, 58, 169-173.

    30. [30]

      [30] D. W. Allen, B. F. Taylor, J. Chem. Soc., Dalton Trans., 1982, 51-54.

    31. [31]

      [31] A. Suárez, M. A. Méndez-Rojas, A. Pizzano, Organometallics, 2002, 21, 4611-4621.

    32. [32]

      [32] B. Milde, D. Schaarschmidt, T. Rüffer, H. Lang, Dalton Trans., 2012, 41, 5377-5390.

    33. [33]

      [33] R. Oilunkaniemi, R. S. Laitinen, M. S. Hannu-Kuure, M. Ahlgrén, J. Organomet. Chem., 2003, 678, 95-101.

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    4. [4]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    5. [5]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    6. [6]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    7. [7]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    11. [11]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    12. [12]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    13. [13]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    15. [15]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    16. [16]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    17. [17]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    18. [18]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

Metrics
  • PDF Downloads(0)
  • Abstract views(530)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return