Citation: Solomon Legese Hailu, Balachandran Unni Nair, Mesfin Redi-Abshiro, Isabel Diaz, Rathinam Aravindhan, Merid Tessema. Oxidation of 4-chloro-3-methylphenol using zeolite Y-encapsulated iron(III)-, nickel(II)-, and copper(II)-N,N'-disalicylidene- 1,2-phenylenediamine complexes[J]. Chinese Journal of Catalysis, ;2016, 37(1): 135-145. doi: 10.1016/S1872-2067(15)61010-5 shu

Oxidation of 4-chloro-3-methylphenol using zeolite Y-encapsulated iron(III)-, nickel(II)-, and copper(II)-N,N'-disalicylidene- 1,2-phenylenediamine complexes

  • Corresponding author: Balachandran Unni Nair, 
  • Received Date: 11 August 2015
    Available Online: 6 November 2015

  • The degradation of 4-chloro-3-methylphenol (PCMC) using zeolite-encapsulated iron(III), nickel(II), and copper(II) complexes of N,N'-disalicylidene-1,2-phenylenediamine as catalysts, in a heterogeneous Fenton-like advanced oxidation process, was studied. The physicochemical properties of the catalysts were determined using powder X-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller surface area analysis, Fourier-transform infrared spectroscopy, elemental analysis, and scanning electron microscopy. The effects of four factors, namely initial H2O2 concentration, catalyst dosage, temperature, and pH, on the degradation of a model organic pollutant were determined. The results show that at low acidic pH, almost complete removal of PCMC was achieved with the iron(III), nickel(II), and copper(II) catalysts after 120 min under the optimum reaction conditions: catalyst dosage 0.1 g, H2O2 concentration 75 mmol/L, initial PCMC concentration 0.35 mmol/L, and 50 ℃. The reusability of the prepared catalysts in PCMC degradation was also studied and a possible catalyst deactivation mechanism is proposed. The possible intermediate products, degradation pathway, and kinetics of PCMC oxidation were also studied.
  • 加载中
    1. [1]

      [1] L. F. Liotta, M. Gruttadauria, G. Di Carlo, G. Perrini, V. Librando, J. Hazard. Mater., 2009, 162, 588.

    2. [2]

      [2] J. M. Britto, S. B. de Oliveira, D. Rabelo, M. do Carmo Rangel, Catal. Today, 2008, 133-135, 582.

    3. [3]

      [3] Z. Lin, H. Chen, Y. Zhou, N. Ogawa, J. M. Lin, J. Environ. Sci., 2012, 24, 550.

    4. [4]

      [4] D. Tabet, M. Saidi, M. Houari, P. Pichat, H. Khalaf, J. Environ. Manage., 2006, 80, 342.

    5. [5]

      [5] L. J. Xu, J. L. Wang, J. Hazard. Mater., 2011, 186, 256.

    6. [6]

      [6] J. Kronholm, H. Metsälä, K. Hartonen, M. L. Riekkola, Environ. Sci. Technol., 2001, 35, 3247.

    7. [7]

      [7] J. Kronholm, S. Huhtala, H. Haario, M. L. Riekkola, Adv. Environ. Res., 2002, 6, 199.

    8. [8]

      [8] A. Y. Chen, X. D. Ma, H. W. Sun, J. Hazard. Mater., 2008, 156, 568.

    9. [9]

      [9] M. Punzi, B. Mattiasson, M. Jonstrup, J. Photochem. Photobiol. A, 2012, 248, 30.

    10. [10]

      [10] H. Kušić, N. Koprivanac, I. Selanec, Chemosphere, 2006, 65, 65.

    11. [11]

      [11] F. C. C. Moura, M. H. Araujo, R. C. C. Costa, J. D. Fabris, J. D. Ardisson, W. A. A. Macedo, R. M. Lago, Chemosphere, 2005, 60, 1118.

    12. [12]

      [12] .J H. Deng, J. Y. Jiang, Y. Y. Zhang, X. P. Lin, C. M. Du, Y. Xiong, Appl. Catal. B, 2008, 84, 468.

    13. [13]

      [13] G. Viola, R. Mckinnom, V. Koval, A. Adomkericius, S. Dunn, H. Yan, J. Phys. Chem. C, 2014, 118, 8564.

    14. [14]

      [14] K. O. Xavier, J. Chacko, Mohammed K. K. Yusuff, Appl. Catal. A, 2004, 258, 251.

    15. [15]

      [15] K. K. Bania, G. V. Karunakar, K. Goutham, R. C. Deka, Inorg. Chem., 2013, 52, 8017.

    16. [16]

      [16] A. Choudhary, B. Das, S. Ray, Dalton Trans., 2015, 44, 3753.

    17. [17]

      [17] F. Bedioui, E. de Boysson, J. Devynck, K. J. Balkus, J. Chem. Soc., Faraday Trans., 1991, 87, 3831.

    18. [18]

      [18] K. K. Bania, D. Bharali, B. Viswanathan, R. C. Deka, Inorg. Chem., 2012, 51, 1657.

    19. [19]

      [19] T. M. Salama, A. H. Ahmed, Z. M. El-Bahy, Microporous Mesoporous Mater., 2006, 89, 251.

    20. [20]

      [20] L. Bounab, O. Iglesias, E. Gonzalez-Romero, M. Pazos, M. Angeles Sanroman, RSC Adv., 2005, 5, 31049.

    21. [21]

      [21] A. Lopez, G. Mascolo, A. Detomaso, G. Lovecchio, G. Villani, Chemosphere, 2005, 59, 397.

    22. [22]

      [22] R. Aravindhan, N. N. Fathima, J. R. Rao, B. U. Nair, J. Hazard. Mater., 2006, 138, 152.

    23. [23]

      [23] M. Silva, C. Freire, B. de Castro, J. L. Figueiredo, J. Mol. Catal. A, 2006, 258, 327.

    24. [24]

      [24] W. H. Quayle, J. H. Lunsford, Inorg. Chem., 1982, 21, 97.

    25. [25]

      [25] M. Salavati-Niasari, Z. Salimi, M. Bazarganipour, F. Davar, Inorg. Chim. Acta, 2009, 362, 3715.

    26. [26]

      [26] X. L. Hu, K. Meyer, Inorg. Chim. Acta, 2002, 337, 53.

    27. [27]

      [27] C. K. Modi, P. M. Trivedi, Adv. Mater. Lett., 2012, 3, 149.

    28. [28]

      [28] B. Dutta, S. Jana, R. Bera, P. K. Saha, S. Koner, Appl. Catal. A, 2007, 318, 89.

    29. [29]

      [29] G. Ramanjaneya Reddy, S. Balasubramanian, K. Chennakesavulu, J. Mater. Chem. A, 2014, 2, 15598.

    30. [30]

      [30] S. Brunauer, L. S. Deming, E. Teller, J. Am. Chem. Soc., 1940, 62, 1723.

    31. [31]

      [31] Y. Yang, H. Ding, S. Hao, Y. Zhang, Q. B. Kan, Appl. Organometal. Chem., 2011, 25, 262.

    32. [32]

      [32] K. K. Bania, R. C. Deka, J. Phys. Chem. C, 2012, 116, 14295.

    33. [33]

      [33] M. Salavati-Niasari, J. Mol. Catal. A, 2006, 245, 192.

    34. [34]

      [34] A. Babuponnusami, K. Muthukumar, J. Environ. Chem. Eng., 2014, 2, 557.

    35. [35]

      [35] J. X. Chen, L. Z. Zhu, Catal. Today, 2007, 126, 463.

    36. [36]

      [36] O. B. Ayodele, J. K. Lim, B. H. Hameed, Appl. Catal. A, 2012, 413-414, 301.

    37. [37]

      [37] H. Y. Xu, M. Prasad, Y. Liu, J. Hazard. Mater., 2009, 165, 1186.

    38. [38]

      [38] J. Guo, M. Al-Dahhan, Appl. Catal. A, 2006, 299, 175.

    39. [39]

      [39] J. H. Ramirez, C. A. Costa, L. M. Madeira, G. Mata, M. A. Vicente, M. L. Rojas-Cervantes, A. J. López-Peinado, R. M. Martín-Aranda, Appl. Catal. B, 2007, 71, 44.

    40. [40]

      [40] J. H. Ramirez, F. M. Duarte, F. G. Martins, C. A. Costa, L. M. Madeira, J. Chem. Eng., 2009, 148, 394.

    41. [41]

      [41] S. L. Hailu, B. U. Nair, M. Redi-Abshiro, R. Aravindhan, I. Diaz, M. Tessema, J. Porous Mater., 2015, 22, 1363.

    42. [42]

      [42] S. L. Hailu, B. U. Nair, M. Redi-Abshiro, R. Aravindhan, I. Diaz, M. Tessema, RSC Adv., 2015, 5, 88636.

  • 加载中
    1. [1]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    10. [10]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    16. [16]

      Xiao-Qi Xu Yapei Wang . Practice of Cultivating Multi-Disciplinary Talents with Comprehensive Skills through Demand-Driven, Individualized Education, and Humanities and Science Integration. University Chemistry, 2024, 39(6): 90-97. doi: 10.3866/PKU.DXHX202311049

    17. [17]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    18. [18]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

Metrics
  • PDF Downloads(0)
  • Abstract views(466)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return