Citation:
Bingyang Bai, Qi Qiao, Junhua Li, Jiming Hao. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chinese Journal of Catalysis,
;2016, 37(1): 102-122.
doi:
10.1016/S1872-2067(15)61007-5
-
Formaldehyde (HCHO) is carcinogenic and teratogenic, and is therefore a serious danger to human health. It also adversely affects air quality. Catalytic oxidation is an efficient technique for removing HCHO. The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures, even room temperature, is important. Supported Pt and Pd catalysts can completely convert HCHO at room temperature, but their industrial applications are limited because they are expensive. The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2, Co3O4, or other metal oxides. This is attributed to their specific structures, high specific surface areas, and other factors such as active phase, reducibility, and amount of surface active oxygens. Such catalysts with various morphologies have great potential and can also be used as catalyst supports. The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature. The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal. In this paper, research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties, structure-activity relationships, and factors influencing the catalytic activity and reaction mechanism are discussed. Future prospects and directions for the development of such catalysts are also covered.
-
-
-
[1]
[1] T. Salthammer, S. Mentese, R. Marutzky, Chem. Rev., 2010, 110, 2536.
-
[2]
[2] M. Hakim, Y. Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, H. Haick, Chem. Rev., 2012, 112, 5949.
-
[3]
[3] O. S. Wenger, Chem. Rev., 2013, 113, 3686.
-
[4]
[4] R. J. Avery, Environ. Sci. Technol., 2006, 40, 4845.
-
[5]
[5] S. P. Chen, T. H. Liu, T. F. Chen, C. F. Ouyang, J. L. Wang, J. S. Chang, Environ. Sci. Technol., 2010, 44, 4635.
-
[6]
[6] C. Domeño, Á. Rodríguez-Lafuente, J. Martos, R. Bilbao, C. Nerín, Environ. Sci. Technol., 2010, 44, 2585.
-
[7]
[7] D. J. Luecken, M. R. Mebust, Environ. Sci. Technol., 2008, 42, 1615.
-
[8]
[8] B. Cardoso, A. S. Mestre, A. P. Carvalho, J. Pires, Ind. Eng. Chem. Res., 2008, 47, 5841.
-
[9]
[9] Y. C. Chiang, P. C. Chiang, C. P. Huang, Carbon, 2001, 39, 523.
-
[10]
[10] S. Brosillon, M. H. Manero, J. N. Foussard, Environ. Sci. Technol., 2001, 35, 3571.
-
[11]
[11] I. Ushiki, M. Ota, Y. Sato, H. Inomata, Fluid Phase Equilibr., 2015, 403, 78.
-
[12]
[12] N. Yao, K. L. Yeung, Chem. Eng. J., 2011, 167, 13.
-
[13]
[13] R. Tejasvi, M. Sharma, K. Upadhyay, Chem. Eng. J., 2015, 262, 875.
-
[14]
[14] M. Hussain, N. Russo, G. Saracco, Chem. Eng. J., 2011, 166, 138.
-
[15]
[15] F. Moulis, J. Krýsa, Catal. Today, 2013, 209, 153.
-
[16]
[16] F. Wang, H. X. Dai, J. G. Deng, G. M. Bai, K. M Ji, Y. X. Liu, Environ. Sci. Technol., 2012, 46, 4034.
-
[17]
[17] J. G. Deng, L. Zhang, H. X. Dai, Y. S. Xia, H. Y. Jiang, H. Zhang, H. He, J. Phys. Chem. C, 2010, 114, 2694.
-
[18]
[18] Q. Ye, J. S. Zhao, F. F. Huo, D. Wang, .S Y. Cheng, T. F. Kang, H. X. Dai, Microporous Mesoporous Mater., 2013, 172, 20.
-
[19]
[19] H. Arandiyan, H. X. Dai, J. G. Deng, Y. Wang, H. Y. Sun, S. H. Xie, B. Y. Bai, Y. X. Liu, K. M. Ji, J. H. Li, J. Phys. Chem. C, 2014, 118, 14913.
-
[20]
[20] H. Arandiyan, H. X. Dai, K. M. Ji, H. Y. Sun, J. H. Li, ACS Catal., 2015, 5, 1781.
-
[21]
[21] B. Y. Bai, J. H. Li, J. M. Hao, Appl. Catal. B, 2015, 164, 241.
-
[22]
[22] Y. Le, D. P. Guo, B. Cheng, J. G. Yu, Appl. Surf. Sci., 2013, 274, 110.
-
[23]
[23] Q. B. Wen, C. Q. Li, Z. H. Cai, W. Zhang, H. L. Gao, L. J. Chen, G. M. Zeng, X. Shu, Y. P. Zhao, Bioresource Technol., 2011, 102, 942.
-
[24]
[24] C. J. Ma, X. H. Li, T. L. Zhu, Carbon, 2011, 49, 2873.
-
[25]
[25] L. D. Zou, Y. G. Luo, M. Hooper, E. Hu, Chem. Eng. Process, 2006, 45, 959.
-
[26]
[26] J. Li, Z. Li, B. Liu, Q. B. Xia, H. X. Xi, Chin. J. Chem. Eng., 2008, 16, 871.
-
[27]
[27] D. Chen, Z. P. Qu, Y. H. Sun, Y. Wang, Colloid Surf. A, 2014, 441, 433.
-
[28]
[28] A. Rezaee, H. Rangkooy, A. Jonidi-Jafari, A. Khavanin, Appl. Surf. Sci, 2013, 286, 235.
-
[29]
[29] H. Q. Rong, Z. Y. Ryu, J. T. Zheng, Y. L. Zhang, Carbon, 2002, 40, 2291.
-
[30]
[30] K. J. Lee, N. Shiratori, G. H. Lee, J. Miyawaki, I. Mochida, S. H. Yoon, J. Jang, Carbon, 2010, 48, 4248.
-
[31]
[31] D. Chen, Z. P. Qu, W. W. Zhang, X. Y. Li, Q D Zhao, Y. Shi, Colloid Surf A, 2011, 379, 136.
-
[32]
[32] K. Kosuge, S. Kubo, N. Kikukawa, M. Takemori, Langmuir, 2007, 23, 3095.
-
[33]
[33] Y. W. Lu, D. H. Wang, C. F. Ma, H. C. Yang, Build. Environ., 2010, 45, 615.
-
[34]
[34] R. Akbarzadeh, S. B. Umbarkar, R. S. Sonawane, S. Takle, M. K. Dongare, Appl. Catal. A, 2010, 374, 103.
-
[35]
[35] P. A. Bourgeois, E. Puzenat, L. Peruchon, F. Simonet, D. Chevalier, E. Deflin, C. Brochier, C. Guillard, Appl. Catal. B, 2012, 128, 171.
-
[36]
[36] P. F. Fu, P. Y. Zhang, J. Li, Appl. Catal. B, 2011, 105, 220.
-
[37]
[37] G. K. Zhang, Q. Xiong, W. Xu, S. Guo, Appl. Clay. Sci., 2014, 102, 231.
-
[38]
[38] Y. You, S. Y. Zhang, L. Wan, D. F. Xu, Appl. Surf. Sci., 2012, 258, 3469.
-
[39]
[39] X. B. Zhu, D. L. Chang, X. S. Li, Z. G. Sun, X. Q. Deng, A. M. Zhu, Chem. Eng. J., 2015, 279, 897.
-
[40]
[40] W. Low, V. Boonamnuayvitaya, J. Environ. Manage., 2013, 127, 142.
-
[41]
[41] M. Khanmohammadi, A. B. Garmarudi, H. Elmizadeh, M. B. Roochi, J. Ind. Eng. Chem., 2014, 20, 1841.
-
[42]
[42] B. Y. Bai, H. Arandiyan, J. H. Li, Appl. Catal. B, 2013, 142-143, 677.
-
[43]
[43] J. Quiroz Torres, S. Royer, J. P. Bellat, J. M. Giraudon, J. F. Lamonier, ChemSusChem, 2013, 6, 578.
-
[44]
[44] C. B. Zhang, H. He, K. I. Tanaka, Appl. Cataly. B, 2006, 65, 37.
-
[45]
[45] C. B. Zhang, H. He, Catal. Today, 2007, 126, 345.
-
[46]
[46] C. B. Zhang, F. D. Liu, Y. P. Zhai, H. Ariga, N. Yi, Y. C. Liu, K. Asakura, M. Flytzani-Stephanopoulos, H. He, Angew. Chem. Int. Ed., 2012, 51, 9628.
-
[47]
[47] L. H. Nie, J. G. Yu, X. Y. Li, B. Cheng, G. Liu, M. Jaroniec, Environ. Sci. Technol., 2013, 47, 2777.
-
[48]
[48] S. S. Kim, K. H. Park, S. C. Hong, Appl. Catal. A, 2011, 398, 96.
-
[49]
[49] N. H. An, W. L. Zhang, X. L. Yuan, B. Pan, G. Liu, M. J. Jia, W. F. Yan, W. X. Zhang, Chem. Eng. J., 2013, 215-216, 1.
-
[50]
[50] J. X. Peng, S. D. Wang, Appl. Catal. B, 2007, 73, 282.
-
[51]
[51] K. T. Chuang, B. Zhou, S. M. Tong, Ind. Eng. Chem. Res., 1994, 33, 1680.
-
[52]
[52] H. B. Huang, D. Y. C. Leung, J. Catal., 2011, 280, 60.
-
[53]
[53] H. B. Huang, D. Y. C. Leung, ACS Catal., 2011, 1, 348.
-
[54]
[54] S. J. Park, I. Bae, I. S. Nam, B. K. Cho, S. M. Jung, J. H. Lee, Chem. Eng. J., 2012, 195-196, 392.
-
[55]
[55] V. A. dela O'Shea, M. CÁlvarez-Galván, J. L. G. Fierro, P. L. Arias, Appl. Catal. B, 2005, 57, 191.
-
[56]
[56] Z. P. Qu, S. J. Shen, D. Chen, Y. Wang, J. Mol. Catal. A, 2012, 356, 171.
-
[57]
[57] C. F. Mao, M. A. Vannice, J. Catal., 1995, 154, 230.
-
[58]
[58] S. Imamura, D. Uchihori, K. Utani, T. Ito, Catal. Lett., 1994, 24, 377.
-
[59]
[59] K. Sekizawa, H. Widjaja, S. Maeda, Y. Ozawa, K. Eguchi, Appl. Catal. A, 2000, 200, 211.
-
[60]
[60] S. Minicò, S. Scirè, C. Crisafulli, R. Maggiore, S. Galvagno, Appl. Catal. B, 2000, 28, 245.
-
[61]
[61] S. Imamura, Y. Uematsu, K. Utani, T. Ito, Ind. Eng. Chem. Res., 1991, 30, 18.
-
[62]
[62] X. F. Tang, J. L. Chen, X. M. Huang, Y. D. Xu, W. J. Shen, Appl. Catal. B, 2008, 81, 115.
-
[63]
[63] X. F. Tang, J. L. Chen, Y. G. Li, Y. Li, Y. D. Xu, W. J. Shen, Chem. Eng. J., 2006, 118, 119.
-
[64]
[64] Y. N. Shen, X. Z. Yang, Y. Z. Wang, Y. B. Zhang, H. Y. Zhu, L .Gao, M. L. Jia, Appl. Catal. B, 2008, 79, 142.
-
[65]
[65] H. F. Li, N. Zhang, P. Chen, M. F. Luo, J. Q. Lu, Appl. Catal. B, 2011, 110, 279.
-
[66]
[66] C. Y. Li, Y. N. Shen, M. L. Jia, S. S. Sheng, M. O. Adebajo, H. Y. Zhu, Catal. Commun., 2008, 9, 355.
-
[67]
[67] N. H. An, Q. S. Yu, G. Liu, S. P. Li, M. J. Jia, W. X. Zhang, J. Hazard. Mater., 2011, 186, 1392.
-
[68]
[68] H. Tian, J. H. He, L. L. Liu, D. H. Wang, Ceram. Int., 2013, 39, 315.
-
[69]
[69] X. H. Yu, J. H. He, D. H. Wang, Y. C. Hu, H. Tian, Z. C. He, J. Phys. Chem. C, 2011, 116, 851.
-
[70]
[70] Z. W. Huang, G. Xu, Q. Q. Cao, P. P. Hu, J. M. Hao, J. H. Li, X. F.Tang, Angew. Chem. Int. Ed., 2012, 51, 4198.
-
[71]
[71] P. P. Hu, Z. Amghouz, Z. W. Huang, F. Xu, Y. X. Chen, X. F. Tang, Environ. Sci. Technol., 2015, 49, 2384.
-
[72]
[72] J. Zhang, Y. Jin, C. Y. Li, Y. N. Shen, L. Han, Z. X. Hu, X. W. Di, Z. L. Liu, Appl. Catal. B, 2009, 91, 11.
-
[73]
[73] B. C. Liu, C. Y. Li, Y. F. Zhang, Y. Liu, W. T. Hu, Q. Wang, L. Han, J. Zhang, Appl. Catal. B, 2012, 111, 467.
-
[74]
[74] B. C. Liu, Y. Liu, C. Y. Li, W. T. Hu, P. Jing, Q. Wang, J. Zhang, Appl. Catal. B, 2012, 127, 47.
-
[75]
[75] C. Y. Ma, D. H. Wang, W. J. Xue, B. J. Dou, H. L. Wang, Z. P. Hao, Environ. Sci. Technol., 2011, 45, 3628.
-
[76]
[76] C. Y. Ma, Z. Mu, J. J. Li, Y. G. Jin, J. Cheng, G. Q. Lu, Z. P. Hao, S. Z. Qiao, J. Am. Chem. Soc., 2010, 132, 2608.
-
[77]
[77] Y. B. Zhang, Y. N. Shen, X. G. Yang, S. S. Sheng, T. Wang, M. F. Adebajo, H. Y. Zhu, J. Mol. Catal. A, 2010, 316, 100.
-
[78]
[78] B. Y. Bai, J. H. Li, ACS Catal., 2014, 4, 2753.
-
[79]
[79] L. Ma, D. S. Wang, J. H. Li, B. Y. Bai, L. X. Fu, Y. D. Li, Appl. Catal. B, 2014, 148-149, 36.
-
[80]
[80] R. H. Wang, J. H. Li, Catal. Lett., 2009, 131, 500.
-
[81]
[81] Y. Sekine, A. Nishimura, Atmos. Environ., 2001, 35, 2001.
-
[82]
[82] Y. Sekine, Atmos. Environ., 2002, 36, 5543.
-
[83]
[83] L. Zhou, J. Zhang, J. H. He, Y. C. Hu, H. Tian, Mater. Res. Bull., 2011, 46, 1714.
-
[84]
[84] T. Chen, H. Y. Dou, X. L. Li, X. F. Tang, J. H. Li, J. M. Hao, Microporous Mesoporous Mater., 2009, 122, 270.
-
[85]
[85] Y. Xu, J. Greeley, M. Mavrikakis, J. Am. Chem. Soc., 2005, 127, 12823.
-
[86]
[86] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Nature, 2009, 458, 746.
-
[87]
[87] D. Widmann, R. J. Behm, Angew. Chem. Int. Ed., 2011, 50, 10241.
-
[88]
[88] H. M. Chen, J. H. He, C. B. Zhang, H. He. J. Phys. Chem. C, 2007, 111, 18033.
-
[89]
[89] X. F. Tang, X. M. Huang, J. J. Shao, J. L. Liu, Y. G. Li, Y. D. Xu, W. J. Shen, Chin. J. Catal., 2006, 27, 97.
-
[90]
[90] H. Tian, J. H. He, X. D. Zhang, L. Zhou, D. H. Wang, Microporous Mesoporous Mater., 2011, 138, 118.
-
[91]
[91] H. Tian, J. H. He, L. L. Liu, D. H. Wang, Z. P. Hao, C. Y. Ma, Microporous Mesoporous Mater., 2012, 151, 397.
-
[92]
[92] Y. S. Xia, H. X. Dai, L. Zhang, J. G. Deng, H. He, C. T. Au, Appl. Catal. B, 2010, 100, 229.
-
[93]
[93] B. Y. Bai, J. H. Li, J. M. Hao, Appl. Catal. B, 2015, 164, 241.
-
[94]
[94] B. Y. Bai, Q. Qiao, J. H. Li, J. M. Hao, Chin. J. Catal., 2015, 36, 27.
-
[95]
[95] X. F. Tang, Y. G. Li, X. M. Huang, Y. D. Xu, H. Q. Zhu, J. G. Wang, W. J. Shen. Appl. Catal. B, 2006, 62, 265.
-
[96]
[96] X. S. Liu, J. Q. Lu, K. Qian, W. X. Huang, M. F. Luo. J. Rare. Earth, 2009, 27, 418.
-
[97]
[97] Y. R. Wen, X. Tang, J. H. Li, J. M. Hao, L. S. Wei, X. F. Tang. Catal. Commun., 2009, 10, 1157.
-
[98]
[98] J. J. Pei, X. Han, Y. Lu, Build. Environ., 2015, 84, 134.
-
[99]
[99] L. Bai, F. Wyrwalski, J. F. Lamonier, A. Y. Khodakov, E. Monflier, A. Ponchel, Appl. Catal. B, 2013, 138-139, 381.
-
[100]
[100] Y. Wang, A. M. Zhu, B. B. Chen, M. Crocker, C. Shi, Catal. Commun., 2013, 36, 52.
-
[101]
[101] H. Arandiyan, H. X. Dai, J. G. Deng, Y. Wang, H. Y. Sun, S. H. Xie, B. Y. Bai, Y. X. Liu, K. M. Ji, J. H. Li, J. Phys. Chem. C, 2014, 118, 14913.
-
[102]
[102] H. Arandiyan, H. X. Dai, K. M. Ji, H. Y. Sun, J. H. Li, ACS Catal., 2015, 5, 1781.
-
[103]
[103] H. Over, A. P. Seitsonen, Science, 2002, 297, 2003.
-
[104]
[104] K. An, S. Alayoglu, N. Musselwhite, S. Plamthottam, G. Melaet, A. E. Lindeman, G. A. Somorjai, J. Am. Chem. Soc., 2013, 135, 16689.
-
[105]
[105] J. H. Li, R. H .Wang, J. M. Hao, J. Phys. Chem. C, 2010, 114, 10544.
-
[106]
[106] Y. X. Liu, H. X. Dai, J. G. Deng, S. H. Xie, H. G. Yang, W. Tan, W. Han, Y. Jiang, G. S. Guo, J. Catal., 2014, 309, 408.
-
[1]
-
-
-
[1]
Kangjuan Cheng , Chunxiao Liu , Youpeng Wang , Qiu Jiang , Tingting Zheng , Xu Li , Chuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112
-
[2]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[3]
Shijie Ren , Mingze Gao , Rui-Ting Gao , Lei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040
-
[4]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[5]
Yuying JIANG , Jia LUO , Zhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124
-
[6]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[7]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[8]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[9]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[10]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[11]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[12]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[13]
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
-
[14]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[15]
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
-
[16]
Ying Chen , Ronghua Yan , Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066
-
[17]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[18]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[19]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[20]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(1420)
- HTML views(348)