Citation: Bingyang Bai, Qi Qiao, Junhua Li, Jiming Hao. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chinese Journal of Catalysis, ;2016, 37(1): 102-122. doi: 10.1016/S1872-2067(15)61007-5 shu

Progress in research on catalysts for catalytic oxidation of formaldehyde

  • Corresponding author: Bingyang Bai,  Junhua Li, 
  • Received Date: 27 August 2015
    Available Online: 20 October 2015

    Fund Project: 国家自然科学基金(21325731, 51478241, 21221004). (21325731, 51478241, 21221004)

  • Formaldehyde (HCHO) is carcinogenic and teratogenic, and is therefore a serious danger to human health. It also adversely affects air quality. Catalytic oxidation is an efficient technique for removing HCHO. The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures, even room temperature, is important. Supported Pt and Pd catalysts can completely convert HCHO at room temperature, but their industrial applications are limited because they are expensive. The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2, Co3O4, or other metal oxides. This is attributed to their specific structures, high specific surface areas, and other factors such as active phase, reducibility, and amount of surface active oxygens. Such catalysts with various morphologies have great potential and can also be used as catalyst supports. The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature. The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal. In this paper, research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties, structure-activity relationships, and factors influencing the catalytic activity and reaction mechanism are discussed. Future prospects and directions for the development of such catalysts are also covered.
  • 加载中
    1. [1]

      [1] T. Salthammer, S. Mentese, R. Marutzky, Chem. Rev., 2010, 110, 2536.

    2. [2]

      [2] M. Hakim, Y. Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, H. Haick, Chem. Rev., 2012, 112, 5949.

    3. [3]

      [3] O. S. Wenger, Chem. Rev., 2013, 113, 3686.

    4. [4]

      [4] R. J. Avery, Environ. Sci. Technol., 2006, 40, 4845.

    5. [5]

      [5] S. P. Chen, T. H. Liu, T. F. Chen, C. F. Ouyang, J. L. Wang, J. S. Chang, Environ. Sci. Technol., 2010, 44, 4635.

    6. [6]

      [6] C. Domeño, Á. Rodríguez-Lafuente, J. Martos, R. Bilbao, C. Nerín, Environ. Sci. Technol., 2010, 44, 2585.

    7. [7]

      [7] D. J. Luecken, M. R. Mebust, Environ. Sci. Technol., 2008, 42, 1615.

    8. [8]

      [8] B. Cardoso, A. S. Mestre, A. P. Carvalho, J. Pires, Ind. Eng. Chem. Res., 2008, 47, 5841.

    9. [9]

      [9] Y. C. Chiang, P. C. Chiang, C. P. Huang, Carbon, 2001, 39, 523.

    10. [10]

      [10] S. Brosillon, M. H. Manero, J. N. Foussard, Environ. Sci. Technol., 2001, 35, 3571.

    11. [11]

      [11] I. Ushiki, M. Ota, Y. Sato, H. Inomata, Fluid Phase Equilibr., 2015, 403, 78.

    12. [12]

      [12] N. Yao, K. L. Yeung, Chem. Eng. J., 2011, 167, 13.

    13. [13]

      [13] R. Tejasvi, M. Sharma, K. Upadhyay, Chem. Eng. J., 2015, 262, 875.

    14. [14]

      [14] M. Hussain, N. Russo, G. Saracco, Chem. Eng. J., 2011, 166, 138.

    15. [15]

      [15] F. Moulis, J. Krýsa, Catal. Today, 2013, 209, 153.

    16. [16]

      [16] F. Wang, H. X. Dai, J. G. Deng, G. M. Bai, K. M Ji, Y. X. Liu, Environ. Sci. Technol., 2012, 46, 4034.

    17. [17]

      [17] J. G. Deng, L. Zhang, H. X. Dai, Y. S. Xia, H. Y. Jiang, H. Zhang, H. He, J. Phys. Chem. C, 2010, 114, 2694.

    18. [18]

      [18] Q. Ye, J. S. Zhao, F. F. Huo, D. Wang, .S Y. Cheng, T. F. Kang, H. X. Dai, Microporous Mesoporous Mater., 2013, 172, 20.

    19. [19]

      [19] H. Arandiyan, H. X. Dai, J. G. Deng, Y. Wang, H. Y. Sun, S. H. Xie, B. Y. Bai, Y. X. Liu, K. M. Ji, J. H. Li, J. Phys. Chem. C, 2014, 118, 14913.

    20. [20]

      [20] H. Arandiyan, H. X. Dai, K. M. Ji, H. Y. Sun, J. H. Li, ACS Catal., 2015, 5, 1781.

    21. [21]

      [21] B. Y. Bai, J. H. Li, J. M. Hao, Appl. Catal. B, 2015, 164, 241.

    22. [22]

      [22] Y. Le, D. P. Guo, B. Cheng, J. G. Yu, Appl. Surf. Sci., 2013, 274, 110.

    23. [23]

      [23] Q. B. Wen, C. Q. Li, Z. H. Cai, W. Zhang, H. L. Gao, L. J. Chen, G. M. Zeng, X. Shu, Y. P. Zhao, Bioresource Technol., 2011, 102, 942.

    24. [24]

      [24] C. J. Ma, X. H. Li, T. L. Zhu, Carbon, 2011, 49, 2873.

    25. [25]

      [25] L. D. Zou, Y. G. Luo, M. Hooper, E. Hu, Chem. Eng. Process, 2006, 45, 959.

    26. [26]

      [26] J. Li, Z. Li, B. Liu, Q. B. Xia, H. X. Xi, Chin. J. Chem. Eng., 2008, 16, 871.

    27. [27]

      [27] D. Chen, Z. P. Qu, Y. H. Sun, Y. Wang, Colloid Surf. A, 2014, 441, 433.

    28. [28]

      [28] A. Rezaee, H. Rangkooy, A. Jonidi-Jafari, A. Khavanin, Appl. Surf. Sci, 2013, 286, 235.

    29. [29]

      [29] H. Q. Rong, Z. Y. Ryu, J. T. Zheng, Y. L. Zhang, Carbon, 2002, 40, 2291.

    30. [30]

      [30] K. J. Lee, N. Shiratori, G. H. Lee, J. Miyawaki, I. Mochida, S. H. Yoon, J. Jang, Carbon, 2010, 48, 4248.

    31. [31]

      [31] D. Chen, Z. P. Qu, W. W. Zhang, X. Y. Li, Q D Zhao, Y. Shi, Colloid Surf A, 2011, 379, 136.

    32. [32]

      [32] K. Kosuge, S. Kubo, N. Kikukawa, M. Takemori, Langmuir, 2007, 23, 3095.

    33. [33]

      [33] Y. W. Lu, D. H. Wang, C. F. Ma, H. C. Yang, Build. Environ., 2010, 45, 615.

    34. [34]

      [34] R. Akbarzadeh, S. B. Umbarkar, R. S. Sonawane, S. Takle, M. K. Dongare, Appl. Catal. A, 2010, 374, 103.

    35. [35]

      [35] P. A. Bourgeois, E. Puzenat, L. Peruchon, F. Simonet, D. Chevalier, E. Deflin, C. Brochier, C. Guillard, Appl. Catal. B, 2012, 128, 171.

    36. [36]

      [36] P. F. Fu, P. Y. Zhang, J. Li, Appl. Catal. B, 2011, 105, 220.

    37. [37]

      [37] G. K. Zhang, Q. Xiong, W. Xu, S. Guo, Appl. Clay. Sci., 2014, 102, 231.

    38. [38]

      [38] Y. You, S. Y. Zhang, L. Wan, D. F. Xu, Appl. Surf. Sci., 2012, 258, 3469.

    39. [39]

      [39] X. B. Zhu, D. L. Chang, X. S. Li, Z. G. Sun, X. Q. Deng, A. M. Zhu, Chem. Eng. J., 2015, 279, 897.

    40. [40]

      [40] W. Low, V. Boonamnuayvitaya, J. Environ. Manage., 2013, 127, 142.

    41. [41]

      [41] M. Khanmohammadi, A. B. Garmarudi, H. Elmizadeh, M. B. Roochi, J. Ind. Eng. Chem., 2014, 20, 1841.

    42. [42]

      [42] B. Y. Bai, H. Arandiyan, J. H. Li, Appl. Catal. B, 2013, 142-143, 677.

    43. [43]

      [43] J. Quiroz Torres, S. Royer, J. P. Bellat, J. M. Giraudon, J. F. Lamonier, ChemSusChem, 2013, 6, 578.

    44. [44]

      [44] C. B. Zhang, H. He, K. I. Tanaka, Appl. Cataly. B, 2006, 65, 37.

    45. [45]

      [45] C. B. Zhang, H. He, Catal. Today, 2007, 126, 345.

    46. [46]

      [46] C. B. Zhang, F. D. Liu, Y. P. Zhai, H. Ariga, N. Yi, Y. C. Liu, K. Asakura, M. Flytzani-Stephanopoulos, H. He, Angew. Chem. Int. Ed., 2012, 51, 9628.

    47. [47]

      [47] L. H. Nie, J. G. Yu, X. Y. Li, B. Cheng, G. Liu, M. Jaroniec, Environ. Sci. Technol., 2013, 47, 2777.

    48. [48]

      [48] S. S. Kim, K. H. Park, S. C. Hong, Appl. Catal. A, 2011, 398, 96.

    49. [49]

      [49] N. H. An, W. L. Zhang, X. L. Yuan, B. Pan, G. Liu, M. J. Jia, W. F. Yan, W. X. Zhang, Chem. Eng. J., 2013, 215-216, 1.

    50. [50]

      [50] J. X. Peng, S. D. Wang, Appl. Catal. B, 2007, 73, 282.

    51. [51]

      [51] K. T. Chuang, B. Zhou, S. M. Tong, Ind. Eng. Chem. Res., 1994, 33, 1680.

    52. [52]

      [52] H. B. Huang, D. Y. C. Leung, J. Catal., 2011, 280, 60.

    53. [53]

      [53] H. B. Huang, D. Y. C. Leung, ACS Catal., 2011, 1, 348.

    54. [54]

      [54] S. J. Park, I. Bae, I. S. Nam, B. K. Cho, S. M. Jung, J. H. Lee, Chem. Eng. J., 2012, 195-196, 392.

    55. [55]

      [55] V. A. dela O'Shea, M. CÁlvarez-Galván, J. L. G. Fierro, P. L. Arias, Appl. Catal. B, 2005, 57, 191.

    56. [56]

      [56] Z. P. Qu, S. J. Shen, D. Chen, Y. Wang, J. Mol. Catal. A, 2012, 356, 171.

    57. [57]

      [57] C. F. Mao, M. A. Vannice, J. Catal., 1995, 154, 230.

    58. [58]

      [58] S. Imamura, D. Uchihori, K. Utani, T. Ito, Catal. Lett., 1994, 24, 377.

    59. [59]

      [59] K. Sekizawa, H. Widjaja, S. Maeda, Y. Ozawa, K. Eguchi, Appl. Catal. A, 2000, 200, 211.

    60. [60]

      [60] S. Minicò, S. Scirè, C. Crisafulli, R. Maggiore, S. Galvagno, Appl. Catal. B, 2000, 28, 245.

    61. [61]

      [61] S. Imamura, Y. Uematsu, K. Utani, T. Ito, Ind. Eng. Chem. Res., 1991, 30, 18.

    62. [62]

      [62] X. F. Tang, J. L. Chen, X. M. Huang, Y. D. Xu, W. J. Shen, Appl. Catal. B, 2008, 81, 115.

    63. [63]

      [63] X. F. Tang, J. L. Chen, Y. G. Li, Y. Li, Y. D. Xu, W. J. Shen, Chem. Eng. J., 2006, 118, 119.

    64. [64]

      [64] Y. N. Shen, X. Z. Yang, Y. Z. Wang, Y. B. Zhang, H. Y. Zhu, L .Gao, M. L. Jia, Appl. Catal. B, 2008, 79, 142.

    65. [65]

      [65] H. F. Li, N. Zhang, P. Chen, M. F. Luo, J. Q. Lu, Appl. Catal. B, 2011, 110, 279.

    66. [66]

      [66] C. Y. Li, Y. N. Shen, M. L. Jia, S. S. Sheng, M. O. Adebajo, H. Y. Zhu, Catal. Commun., 2008, 9, 355.

    67. [67]

      [67] N. H. An, Q. S. Yu, G. Liu, S. P. Li, M. J. Jia, W. X. Zhang, J. Hazard. Mater., 2011, 186, 1392.

    68. [68]

      [68] H. Tian, J. H. He, L. L. Liu, D. H. Wang, Ceram. Int., 2013, 39, 315.

    69. [69]

      [69] X. H. Yu, J. H. He, D. H. Wang, Y. C. Hu, H. Tian, Z. C. He, J. Phys. Chem. C, 2011, 116, 851.

    70. [70]

      [70] Z. W. Huang, G. Xu, Q. Q. Cao, P. P. Hu, J. M. Hao, J. H. Li, X. F.Tang, Angew. Chem. Int. Ed., 2012, 51, 4198.

    71. [71]

      [71] P. P. Hu, Z. Amghouz, Z. W. Huang, F. Xu, Y. X. Chen, X. F. Tang, Environ. Sci. Technol., 2015, 49, 2384.

    72. [72]

      [72] J. Zhang, Y. Jin, C. Y. Li, Y. N. Shen, L. Han, Z. X. Hu, X. W. Di, Z. L. Liu, Appl. Catal. B, 2009, 91, 11.

    73. [73]

      [73] B. C. Liu, C. Y. Li, Y. F. Zhang, Y. Liu, W. T. Hu, Q. Wang, L. Han, J. Zhang, Appl. Catal. B, 2012, 111, 467.

    74. [74]

      [74] B. C. Liu, Y. Liu, C. Y. Li, W. T. Hu, P. Jing, Q. Wang, J. Zhang, Appl. Catal. B, 2012, 127, 47.

    75. [75]

      [75] C. Y. Ma, D. H. Wang, W. J. Xue, B. J. Dou, H. L. Wang, Z. P. Hao, Environ. Sci. Technol., 2011, 45, 3628.

    76. [76]

      [76] C. Y. Ma, Z. Mu, J. J. Li, Y. G. Jin, J. Cheng, G. Q. Lu, Z. P. Hao, S. Z. Qiao, J. Am. Chem. Soc., 2010, 132, 2608.

    77. [77]

      [77] Y. B. Zhang, Y. N. Shen, X. G. Yang, S. S. Sheng, T. Wang, M. F. Adebajo, H. Y. Zhu, J. Mol. Catal. A, 2010, 316, 100.

    78. [78]

      [78] B. Y. Bai, J. H. Li, ACS Catal., 2014, 4, 2753.

    79. [79]

      [79] L. Ma, D. S. Wang, J. H. Li, B. Y. Bai, L. X. Fu, Y. D. Li, Appl. Catal. B, 2014, 148-149, 36.

    80. [80]

      [80] R. H. Wang, J. H. Li, Catal. Lett., 2009, 131, 500.

    81. [81]

      [81] Y. Sekine, A. Nishimura, Atmos. Environ., 2001, 35, 2001.

    82. [82]

      [82] Y. Sekine, Atmos. Environ., 2002, 36, 5543.

    83. [83]

      [83] L. Zhou, J. Zhang, J. H. He, Y. C. Hu, H. Tian, Mater. Res. Bull., 2011, 46, 1714.

    84. [84]

      [84] T. Chen, H. Y. Dou, X. L. Li, X. F. Tang, J. H. Li, J. M. Hao, Microporous Mesoporous Mater., 2009, 122, 270.

    85. [85]

      [85] Y. Xu, J. Greeley, M. Mavrikakis, J. Am. Chem. Soc., 2005, 127, 12823.

    86. [86]

      [86] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Nature, 2009, 458, 746.

    87. [87]

      [87] D. Widmann, R. J. Behm, Angew. Chem. Int. Ed., 2011, 50, 10241.

    88. [88]

      [88] H. M. Chen, J. H. He, C. B. Zhang, H. He. J. Phys. Chem. C, 2007, 111, 18033.

    89. [89]

      [89] X. F. Tang, X. M. Huang, J. J. Shao, J. L. Liu, Y. G. Li, Y. D. Xu, W. J. Shen, Chin. J. Catal., 2006, 27, 97.

    90. [90]

      [90] H. Tian, J. H. He, X. D. Zhang, L. Zhou, D. H. Wang, Microporous Mesoporous Mater., 2011, 138, 118.

    91. [91]

      [91] H. Tian, J. H. He, L. L. Liu, D. H. Wang, Z. P. Hao, C. Y. Ma, Microporous Mesoporous Mater., 2012, 151, 397.

    92. [92]

      [92] Y. S. Xia, H. X. Dai, L. Zhang, J. G. Deng, H. He, C. T. Au, Appl. Catal. B, 2010, 100, 229.

    93. [93]

      [93] B. Y. Bai, J. H. Li, J. M. Hao, Appl. Catal. B, 2015, 164, 241.

    94. [94]

      [94] B. Y. Bai, Q. Qiao, J. H. Li, J. M. Hao, Chin. J. Catal., 2015, 36, 27.

    95. [95]

      [95] X. F. Tang, Y. G. Li, X. M. Huang, Y. D. Xu, H. Q. Zhu, J. G. Wang, W. J. Shen. Appl. Catal. B, 2006, 62, 265.

    96. [96]

      [96] X. S. Liu, J. Q. Lu, K. Qian, W. X. Huang, M. F. Luo. J. Rare. Earth, 2009, 27, 418.

    97. [97]

      [97] Y. R. Wen, X. Tang, J. H. Li, J. M. Hao, L. S. Wei, X. F. Tang. Catal. Commun., 2009, 10, 1157.

    98. [98]

      [98] J. J. Pei, X. Han, Y. Lu, Build. Environ., 2015, 84, 134.

    99. [99]

      [99] L. Bai, F. Wyrwalski, J. F. Lamonier, A. Y. Khodakov, E. Monflier, A. Ponchel, Appl. Catal. B, 2013, 138-139, 381.

    100. [100]

      [100] Y. Wang, A. M. Zhu, B. B. Chen, M. Crocker, C. Shi, Catal. Commun., 2013, 36, 52.

    101. [101]

      [101] H. Arandiyan, H. X. Dai, J. G. Deng, Y. Wang, H. Y. Sun, S. H. Xie, B. Y. Bai, Y. X. Liu, K. M. Ji, J. H. Li, J. Phys. Chem. C, 2014, 118, 14913.

    102. [102]

      [102] H. Arandiyan, H. X. Dai, K. M. Ji, H. Y. Sun, J. H. Li, ACS Catal., 2015, 5, 1781.

    103. [103]

      [103] H. Over, A. P. Seitsonen, Science, 2002, 297, 2003.

    104. [104]

      [104] K. An, S. Alayoglu, N. Musselwhite, S. Plamthottam, G. Melaet, A. E. Lindeman, G. A. Somorjai, J. Am. Chem. Soc., 2013, 135, 16689.

    105. [105]

      [105] J. H. Li, R. H .Wang, J. M. Hao, J. Phys. Chem. C, 2010, 114, 10544.

    106. [106]

      [106] Y. X. Liu, H. X. Dai, J. G. Deng, S. H. Xie, H. G. Yang, W. Tan, W. Han, Y. Jiang, G. S. Guo, J. Catal., 2014, 309, 408.

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    5. [5]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    6. [6]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    7. [7]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    11. [11]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    17. [17]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    18. [18]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    19. [19]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

Metrics
  • PDF Downloads(1)
  • Abstract views(1356)
  • HTML views(343)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return