Citation: Wei Li, Chuanfeng Huang, Dapeng Li, Pengju Huo, Mingfeng Wang, Lei Han, Gang Chen, Huihui Li, Xiaohong Li, Yongjuan Wang, Mengyan Wang. Derived oil production by catalytic pyrolysis of scrap tires[J]. Chinese Journal of Catalysis, ;2016, 37(4): 526-532. doi: 10.1016/S1872-2067(15)60998-6 shu

Derived oil production by catalytic pyrolysis of scrap tires

  • Corresponding author: Wei Li, 
  • Received Date: 23 November 2015
    Available Online: 20 January 2016

    Fund Project: 延长石油集团VCC配套技术研发项目(ycsy2014ky-A-14). (ycsy2014ky-A-14)

  • Scrap tires were pyrolyzed in a continuously stirred batch reactor in the presence and absence of catalysts. The maximum yield of derived oil was up to 55.65 wt% at the optimum temperature, 500 ℃. The catalytic pyrolysis was performed using 1.0 wt% (on a scrap tire weight basis) of catalysts based on ZSM-5, USY, β, SAPO-11, and ZSM-22. The oil products were characterized using simulation distillation, elemental analysis, and gas chromatography-mass spectrometry. The results show that using a catalyst can increase the conversion of scrap tires to gas and decrease char by-products; the yield of derived oil remains unchanged or a little lower. The oils derived from catalytic pyrolysis had H/C ratios of 1.55-1.65 and contained approximately 70-75 wt% light oil, 0.3-0.58 wt% S and 0.78-1.0 wt% N. Catalysts with high acid strengths and appropriate pore sizes, such as ZSM-5, USY, β, and SAPO-11, increased the amount of single-ring aromatics in the light-middle-fraction oil to 45 wt%. The derived oil can therefore be used as a petrochemical feedstock for producing high-value-added chemical products or fuel oil.
  • 加载中
    1. [1]

      [1] B. Z. Qian, J. F. Zhu, Rubber Plast. Resour. Utili., 2010, (4), 30-41.

    2. [2]

      [2] J. H. Yan, Y. L. Gao, Z. X. Zhang, Y. Chi, K. F. Cen, J. Fuel Chem. Technol., 2003, 31, 589-594.

    3. [3]

      [3] P. T. Williams, A. J. Cunliffe, A. J. Brindle, J. Engery Inst., 2001, 74, 100-112.

    4. [4]

      [4] S. Q. Li, Q. Yao, Y. Chi, J. H. Yan, K. F. Cen, Ind. Eng. Chem. Res., 2004, 43, 5133-5145.

    5. [5]

      [5] P. T. Williams, A. J. Brindle, Waste Manage Res., 2002, 20, 546-555.

    6. [6]

      [6] P. T. Williams, A. J. Brindle, Fuel, 2003, 82, 1023-1031.

    7. [7]

      [7] J. A. Conesa, I. Martín-Gullón, R. Font, J. Anal. Appl. Pyrolysis., 2005, 74, 265-269.

    8. [8]

      [8] G. San Miguel, J. Aguado, D. P. Serrano, J. M. Escola, Appl. Catal. B, 2006, 64, 209-219.

    9. [9]

      [9] P. T. Williams, A. J. Brindle, J. Anal. Appl. Pyrolysis., 2003, 67, 143-164.

    10. [10]

      [10] P. T. Williams, A. J. Brindle, Fuel, 2002, 81, 2425-2434.

    11. [11]

      [11] E. Aylón, A. Fernández-Colino, R. Murillo, M. V. Navarro, T. García, A. M. Mastral, Waste Manage, 2010, 30, 1220-1224.

    12. [12]

      [12] A. M. Mastral, R. Murillo, M. S. Callén, T. García, C. E. Snape, Energy Fuel, 2000, 14, 739-744.

    13. [13]

      [13] R. Murillo, E. Aylón, M. V. Navarro, M. S. Callén, A. Aranda, A. M. Mastral, Fuel Processing Technol., 2006, 87, 143-147.

    14. [14]

      [14] S. Baumlin, F. Broust, M. Ferrer, N. Meunier, E. Marty, J. Lede, Chem. Eng. Sci., 2005, 60, 41-55.

    15. [15]

      [15] W. J. Hall, P. T. Williams, J. Anal. Appl. Pyrolysis., 2008, 81, 139-147.

    16. [16]

      [16] T. Miyazawa, T. Kimura, J. Nishikawa, S. Kado, K. Kunimori, K. Tomishige, Catal.Today, 2006, 115, 254-262.

    17. [17]

      [17] C. Berrueco, E. Esperanza, F. J. Mastral, J. Ceamanos, P. García-Bacaicoa, J. Anal. Appl. Pyrolysis., 2005, 74, 245-253.

    18. [18]

      [18] M. F. Laresgoiti, B. M. Caballero, I. De Marco, A. Torres, M. A. Cabrero, M. J. Chomón, J. Anal. Appl. Pyrolysis., 2004, 71, 917-934.

    19. [19]

      [19] D. P. Serrano, J. Aguado, J. M. Escola, J. M. Rodriguez, G. San Miguel, J. Anal. Appl. Pyrolysis., 2005, 74, 370-378.

    20. [20]

      [20] D. P. Serrano, J. Aguado, J. M. Escola, E. Garagorri, J. M. Rodríguez, L. Morselli, G. Palazzi, R. Orsi, Appl. Catal. B, 2004, 49, 257-265.

    21. [21]

      [21] F. A. López, T. A. Centeno, F. J. Alguacil, B. Lobato, J. Hazard Mater., 2011, 190, 285-292.

    22. [22]

      [22] R. Murillo, A. Aranda, E. Aylón, M. S. Callén, A. M. Mastral, Ind. Eng. Chem. Res., 2006, 45, 1734-1738.

    23. [23]

      [23] M. R. Islam, H. Hiroyuki, A. R. Beg, T. Kazunori, Int. J. Elec. Power, 2008, 6, 1359.

    24. [24]

      [24] H. Pakdel, D. M. Pantea, C. Roy, J. Anal. Appl. Pyrolysis., 2001, 57, 91-107.

    25. [25]

      [25] J. Schirmer, J. S. Kim, E. Klemn, J. Anal. Appl. Pyrolysis., 2001, 60, 205-217.

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    12. [12]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    13. [13]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    14. [14]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    15. [15]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(0)
  • Abstract views(1056)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return