Citation:
Wei Li, Chuanfeng Huang, Dapeng Li, Pengju Huo, Mingfeng Wang, Lei Han, Gang Chen, Huihui Li, Xiaohong Li, Yongjuan Wang, Mengyan Wang. Derived oil production by catalytic pyrolysis of scrap tires[J]. Chinese Journal of Catalysis,
;2016, 37(4): 526-532.
doi:
10.1016/S1872-2067(15)60998-6
-
Scrap tires were pyrolyzed in a continuously stirred batch reactor in the presence and absence of catalysts. The maximum yield of derived oil was up to 55.65 wt% at the optimum temperature, 500 ℃. The catalytic pyrolysis was performed using 1.0 wt% (on a scrap tire weight basis) of catalysts based on ZSM-5, USY, β, SAPO-11, and ZSM-22. The oil products were characterized using simulation distillation, elemental analysis, and gas chromatography-mass spectrometry. The results show that using a catalyst can increase the conversion of scrap tires to gas and decrease char by-products; the yield of derived oil remains unchanged or a little lower. The oils derived from catalytic pyrolysis had H/C ratios of 1.55-1.65 and contained approximately 70-75 wt% light oil, 0.3-0.58 wt% S and 0.78-1.0 wt% N. Catalysts with high acid strengths and appropriate pore sizes, such as ZSM-5, USY, β, and SAPO-11, increased the amount of single-ring aromatics in the light-middle-fraction oil to 45 wt%. The derived oil can therefore be used as a petrochemical feedstock for producing high-value-added chemical products or fuel oil.
-
Keywords:
- Scrap tire,
- Catalytic pyrolysis,
- Derived oil,
- Aromatic
-
-
-
[1]
[1] B. Z. Qian, J. F. Zhu, Rubber Plast. Resour. Utili., 2010, (4), 30-41.
-
[2]
[2] J. H. Yan, Y. L. Gao, Z. X. Zhang, Y. Chi, K. F. Cen, J. Fuel Chem. Technol., 2003, 31, 589-594.
-
[3]
[3] P. T. Williams, A. J. Cunliffe, A. J. Brindle, J. Engery Inst., 2001, 74, 100-112.
-
[4]
[4] S. Q. Li, Q. Yao, Y. Chi, J. H. Yan, K. F. Cen, Ind. Eng. Chem. Res., 2004, 43, 5133-5145.
-
[5]
[5] P. T. Williams, A. J. Brindle, Waste Manage Res., 2002, 20, 546-555.
-
[6]
[6] P. T. Williams, A. J. Brindle, Fuel, 2003, 82, 1023-1031.
-
[7]
[7] J. A. Conesa, I. Martín-Gullón, R. Font, J. Anal. Appl. Pyrolysis., 2005, 74, 265-269.
-
[8]
[8] G. San Miguel, J. Aguado, D. P. Serrano, J. M. Escola, Appl. Catal. B, 2006, 64, 209-219.
-
[9]
[9] P. T. Williams, A. J. Brindle, J. Anal. Appl. Pyrolysis., 2003, 67, 143-164.
-
[10]
[10] P. T. Williams, A. J. Brindle, Fuel, 2002, 81, 2425-2434.
-
[11]
[11] E. Aylón, A. Fernández-Colino, R. Murillo, M. V. Navarro, T. García, A. M. Mastral, Waste Manage, 2010, 30, 1220-1224.
-
[12]
[12] A. M. Mastral, R. Murillo, M. S. Callén, T. García, C. E. Snape, Energy Fuel, 2000, 14, 739-744.
-
[13]
[13] R. Murillo, E. Aylón, M. V. Navarro, M. S. Callén, A. Aranda, A. M. Mastral, Fuel Processing Technol., 2006, 87, 143-147.
-
[14]
[14] S. Baumlin, F. Broust, M. Ferrer, N. Meunier, E. Marty, J. Lede, Chem. Eng. Sci., 2005, 60, 41-55.
-
[15]
[15] W. J. Hall, P. T. Williams, J. Anal. Appl. Pyrolysis., 2008, 81, 139-147.
-
[16]
[16] T. Miyazawa, T. Kimura, J. Nishikawa, S. Kado, K. Kunimori, K. Tomishige, Catal.Today, 2006, 115, 254-262.
-
[17]
[17] C. Berrueco, E. Esperanza, F. J. Mastral, J. Ceamanos, P. García-Bacaicoa, J. Anal. Appl. Pyrolysis., 2005, 74, 245-253.
-
[18]
[18] M. F. Laresgoiti, B. M. Caballero, I. De Marco, A. Torres, M. A. Cabrero, M. J. Chomón, J. Anal. Appl. Pyrolysis., 2004, 71, 917-934.
-
[19]
[19] D. P. Serrano, J. Aguado, J. M. Escola, J. M. Rodriguez, G. San Miguel, J. Anal. Appl. Pyrolysis., 2005, 74, 370-378.
-
[20]
[20] D. P. Serrano, J. Aguado, J. M. Escola, E. Garagorri, J. M. Rodríguez, L. Morselli, G. Palazzi, R. Orsi, Appl. Catal. B, 2004, 49, 257-265.
-
[21]
[21] F. A. López, T. A. Centeno, F. J. Alguacil, B. Lobato, J. Hazard Mater., 2011, 190, 285-292.
-
[22]
[22] R. Murillo, A. Aranda, E. Aylón, M. S. Callén, A. M. Mastral, Ind. Eng. Chem. Res., 2006, 45, 1734-1738.
-
[23]
[23] M. R. Islam, H. Hiroyuki, A. R. Beg, T. Kazunori, Int. J. Elec. Power, 2008, 6, 1359.
-
[24]
[24] H. Pakdel, D. M. Pantea, C. Roy, J. Anal. Appl. Pyrolysis., 2001, 57, 91-107.
-
[25]
[25] J. Schirmer, J. S. Kim, E. Klemn, J. Anal. Appl. Pyrolysis., 2001, 60, 205-217.
-
[1]
-
-
-
[1]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[2]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[3]
Jiarui Wu , Gengxin Wu , Yan Wang , Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014
-
[4]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[5]
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[8]
Shijie Ren , Mingze Gao , Rui-Ting Gao , Lei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040
-
[9]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[10]
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
-
[11]
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
-
[12]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[13]
Kexin Yan , Zhaoqi Ye , Lingtao Kong , He Li , Xue Yang , Yahong Zhang , Hongbin Zhang , Yi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019
-
[14]
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
-
[15]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[16]
Siran Wang , Yinuo Wang , Yilong Zhao , Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033
-
[17]
Runjie Li , Hang Liu , Xisheng Wang , Wanqun Zhang , Wanqun Hu , Kaiping Yang , Qiang Zhou , Si Liu , Pingping Zhu , Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059
-
[18]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[19]
Yang ZHOU , Lili YAN , Wenjuan ZHANG , Pinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032
-
[20]
Jia-He Li , Yu-Ze Liu , Jia-Hui Ma , Qing-Xiao Tong , Jian-Ji Zhong , Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1121)
- HTML views(219)