Citation: Yanke Yu, Jinsheng Chen, Jinxiu Wang, Yanting Chen. Performances of CuSO4/TiO2 catalysts in selective catalytic reduction of NOx by NH3[J]. Chinese Journal of Catalysis, ;2016, 37(2): 281-287. doi: 10.1016/S1872-2067(15)60993-7 shu

Performances of CuSO4/TiO2 catalysts in selective catalytic reduction of NOx by NH3

  • Corresponding author: Jinsheng Chen, 
  • Received Date: 30 August 2015
    Available Online: 12 October 2015

    Fund Project: 福建省科技计划工业引导性重点项目-烟气脱硝催化剂再生关键技术研究(2015H0043) (2015H0043) 中国科学院战略性先导科技专项(XDB05050500) (XDB05050500) 国家自然科学基金(21403210). (21403210)

  • A series of CuSO4/TiO2 catalysts were prepared using a wet impregnation method. The activity of each sample in the selective catalytic reduction of NO by NH3 (NH3-SCR) was determined. The effects of SO2 and H2O, and their combined effect, on the activity were examined at 340℃ for 24 h. The catalysts were characterized using N2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction of H2 (H2-TPR), temperature-programmed desorption of NH3 (NH3-TPD), and in situ diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS). The CuSO4/TiO2 catalysts had good activities, with low production of N2O above 340℃. SO2 or a combination of SO2 and H2O had little effect on the activity, and H2O caused only a slight decrease in activity during the experimental period. The NH3-TPD and H2-TPR results showed that CuSO4 increased the amounts of acid sites and adsorbed oxygen on the catalyst. In situ DRIFTS showed that the NH3-SCR reaction on the CuSO4/TiO2 catalysts followed an Eley-Rideal mechanism. The reaction of gaseous NO with NH3 adsorbed on Lewis acid sites to form N2 and H2O could be the main reaction pathway, and oxygen adsorption might favor this process.
  • 加载中
    1. [1]

      [1] M. F. Fu, C. T. Li, P. Lu, L. Qu, M. Y. Zhang, Y. Zhou, M. G. Yu, Y. Fang, Catal. Sci. Technol., 2014, 4, 14.

    2. [2]

      [2] Y. Peng, J. H. Li, W. B. Shi, J. X. Xu, J. M. Hao, Environ. Sci. Technol., 2012, 46, 12623.

    3. [3]

      [3] X. Y. Shi, H. He, L. J. Xie, Chin. J. Catal., 2015, 36, 649.

    4. [4]

      [4] G. X. Wu, J. Li, Z. T. Fang, L. Lan, R. Wang, M. C. Gong, Y. Q. Chen, Catal. Commun., 2015, 64, 75.

    5. [5]

      [5] Z. M. Liu, J. H. Li, A. S. M. Junaid, Catal. Today, 2010, 153, 95.

    6. [6]

      [6] W. Q. Xu, H. He, Y. B. Yu, J. Phys. Chem. C, 2009, 113, 4426.

    7. [7]

      [7] W. S. Kijlstra, M. Biervliet, E. K. Poels, A. Bliek, Appl. Catal. B, 1998, 16, 327.

    8. [8]

      [8] F. C. Galisteo, R. Mariscal, M. L. Granados, J. L. G. Fierro, P. Brettes, O. Salas, Environ. Sci. Technol., 2005, 39, 3844.

    9. [9]

      [9] Y. K. Yu, C. He, J. S. Chen, L. Q. Yin, T. X. Qiu, X. R. Meng, Catal. Commun., 2013, 39, 78.

    10. [10]

      [10] Y. K. Yu, J. X. Wang, J. S. Chen, X. R. Meng, Y. T. Chen, C. He, Ind. Eng. Chem. Res., 2014, 53, 16229.

    11. [11]

      [11] G. Y. Xie, Z. Y. Liu, Z. P. Zhu, Q. Y. Liu, J. Ge, Z. G. Huang, J. Catal., 2004, 224, 42.

    12. [12]

      [12] L. Ma, J. H. Li, R. Ke, L. X. Fu, J. Phys. Chem. C, 2011, 115, 7603.

    13. [13]

      [13] D. Pietrogiacomi, D. Sannino, A. Magliano, P. Ciambelli, S. Tuti, V. Indovina, Appl. Catal. B, 2002, 36, 217.

    14. [14]

      [14] L. Pang, C. Fan, L. N. Shao, J. X. Yi, X. Cai, J. Wang, M. Kang, T. Li, Chin. J. Catal., 2014, 35, 2020.

    15. [15]

      [15] G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B, 1998, 18, 1.

    16. [16]

      [16] G. Z. Liu, G. L. Zhao, F. X. Meng, S. D. Qu, W. Li, X. W. Zhang, Energy Fuels, 2012, 26, 1220.

    17. [17]

      [17] X. L. Tang, F. Y. Gao, Y. Xiang, H. H. Yi, S. Z. Zhao, Catal. Commun., 2015, 64, 12.

    18. [18]

      [18] D. Lopez, R. Buitrago, A. Sepulveda-Escribano, F. Rodriguez-Reinoso, F. Mondragon, J. Phys. Chem. C, 2008, 112, 15335.

    19. [19]

      [19] S. Kato, Y. Hirano, M. Iwata, T. Sano, K. Takeuchi, S. Matsuzawa, Appl. Catal. B, 2005, 57, 109.

    20. [20]

      [20] Y. Peng, J. H. Li, W. Z. Si, J. M. Luo, Y. Wang, J. Fu, X. Li, J. Crittenden, J. M. Hao, Appl. Catal. B, 2015, 168, 195.

    21. [21]

      [21] L. K. Boudali, A. Ghorbel, P. Grange, Appl. Catal. A, 2006, 305, 7.

    22. [22]

      [22] N. Y. Topsöe, Science, 1994, 265, 1217.

    23. [23]

      [23] G. Ramis, G. Busca, F. Bregani, P. Forzatti, Appl. Catal., 1990, 64, 259.

    24. [24]

      [24] D. A. Pena, B. S. Uphade, P. G. Smirniotis, J. Catal., 2004, 221, 421.

    25. [25]

      [25] L. Chen, Z. C. Si, X. D. Wu, D. Weng, ACS Appl. Mater. Interf., 2014, 6, 8134.

    26. [26]

      [26] D. Wang, L. Zhang, K. Kamasamudram, W. S. Epling, ACS Catal., 2013, 3, 871.

    27. [27]

      [27] L. Q. Nguyen, C. Salim, H. Hinode, Appl. Catal. B, 2010, 96, 299.

    28. [28]

      [28] M. A. Debeila, N. J. Coville, M. S. Scurrell, G. R. Hearne, Catal. Today, 2002, 72, 79.

  • 加载中
    1. [1]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    2. [2]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    3. [3]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    12. [12]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    13. [13]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    16. [16]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    20. [20]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

Metrics
  • PDF Downloads(0)
  • Abstract views(773)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return