Citation: Safura Kavian, Seyed Naser Azizi, Shahram Ghasemi. Preparation of a novel supported electrode comprising a nickel (II) hydroxide-modified carbon paste electrode (Ni(OH)2-X/CPE) for the electrocatalytic oxidation of formaldehyde[J]. Chinese Journal of Catalysis, ;2016, 37(1): 159-168. doi: 10.1016/S1872-2067(15)60990-1 shu

Preparation of a novel supported electrode comprising a nickel (II) hydroxide-modified carbon paste electrode (Ni(OH)2-X/CPE) for the electrocatalytic oxidation of formaldehyde

  • Corresponding author: Seyed Naser Azizi, 
  • Received Date: 28 August 2015
    Available Online: 2 October 2015

  • We prepared a novel nickel (II) hydroxide-modified carbon paste electrode (Ni(OH)2-X/CPE) for the electrocatalytic oxidation of formaldehyde. The electrode was prepared by a simple method without the use of linking chemicals. The prepared Ni(OH)2-X/CPE material was characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. The electrochemical performance of the proposed electrode was investigated using cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. The results indicate that Ni(OH)2-X/CPE exhibits good electrocatalytic activity with regards to formaldehyde oxidation owing to its nanoporous structure and the large surface area of zeolite X. The values of the electron transfer coefficient and the catalytic rate constant were 0.7 and 6.1 × 104 cm3/(mol·s), respectively. Therefore, the proposed electrode, which showed remarkable electroactivity with regards to formaldehyde oxidation with long-term stability and good reproducibility, could be useful in fuel cells.
  • 加载中
    1. [1]

      [1] Y. Y. Shao, G. P. Yin, Z. B. Wang, Y. Z. Gao, J. Power Sources, 2007, 167, 235.

    2. [2]

      [2] H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang, D. P. Wilkinson, J. Power Sources, 2006, 155, 95.

    3. [3]

      [3] N. W. DeLuca, Y. A. Elabd, J. Polym. Sci. B, 2006, 44, 2201.

    4. [4]

      [4] E. Antolini, Mater. Chem. Phys., 2003, 78, 563.

    5. [5]

      [5] H. Ahmad, S. K. Kamarudin, U. A. Hasran, W. R. W. Daud, Int. J. Hydrogen Energy, 2010, 35, 2160.

    6. [6]

      [6] Z. Wang, Z. Z. Zhu, J. Shi, H. L. Li, Appl. Surf. Sci., 2007, 253, 8811.

    7. [7]

      [7] C. M. Jiang, H. Chen, C. Yu, S. Zhang, B. H. Liu, J. L. Kong, Electrochim. Acta, 2009, 54, 1134.

    8. [8]

      [8] H. M. Villullas, F. I. Mattos-Costa, P. A. P. Nascente, L. O. S. Bulhões, Electrochim. Acta, 2004, 49, 3909.

    9. [9]

      [9] V. Selvaraj, M. Alagar, K. S. Kumar, Appl. Catal. B, 2007, 75, 129.

    10. [10]

      [10] D. L. Wang, J. Wang, S. F. Lu, S. P. Jiang, J. Electroanal. Chem., 2014, 712, 55.

    11. [11]

      [11] Y. N. Yu, T. Wang, Y. Y. Fu, W. Su, J. B. Hu, Int. J. Hydrogen Energy, 2014, 39, 17617.

    12. [12]

      [12] L. A. Hutton, M. Vidotti, A. N. Patel, M. E. Newton, P. R. Unwin, J. V. Macpherson, J. Phys. Chem. C, 2011, 115, 1649.

    13. [13]

      [13] M. Vidotti, S. I. C. de Torresi, L. T. Kubota, Sens. Actuators B, 2008, 135, 245.

    14. [14]

      [14] Q. F. Yi, J. J. Zhang, W. Huang, X. P. Liu, Catal. Commun., 2007, 8, 1017.

    15. [15]

      [15] I. Danaee, M. Jafarian, A. Mirzapoor, F. Gobal, M. G. Mahjani, Electrochim. Acta, 2010, 55, 2093.

    16. [16]

      [16] A. Arvinte, A. C. Westermann, A. M. Sesay, V. Virtanen, Sens. Actuators B, 2010, 150, 756.

    17. [17]

      [17] A. Kapałka, A. Cally, S. Neodo, C. Comninellis, M. Wächter, K. M. Udert, Electrochem. Commun., 2010, 12, 18.

    18. [18]

      [18] B. P. Lu, J. Bai, X. J. Bo, L. D. Zhu, L. P. Guo, Electrochim. Acta, 2010, 55, 8724.

    19. [19]

      [19] A. Safavi, N. Maleki, E. Farjami, Biosens. Bioelectron., 2009, 24, 1655.

    20. [20]

      [20] R. Ojani, J. B. Raoof, S. R. H. Zavvarmahalleh, J. Solid State Electrochem., 2009, 13, 1605.

    21. [21]

      [21] J. B. Raoof, A. Omrani, R. Ojani, F. Monfared, J. Electroanal. Chem., 2009, 633, 153.

    22. [22]

      [22] J. B. Raoof, R. Ojani, S. Abdi, S. R. Hosseini, Int. J. Hydrogen Energy, 2012, 37, 2137.

    23. [23]

      [23] R. Ojani, J. B. Raoof, S. Safshekan, J. Appl. Electrochem., 2012, 42, 81.

    24. [24]

      [24] M. N. Ding, Y. F. Tang, A. Star, J. Phys. Chem. Lett., 2013, 4, 147.

    25. [25]

      [25] G. Y. Gao, D. J. Guo, H. L. Li, J. Power Sources, 2006, 162, 1094.

    26. [26]

      [26] R. W. Murry, A. G. Ewing, R. A. Durst, Anal. Chem., 1987, 59, 379.

    27. [27]

      [27] M. W. Khalil, M. A. Abdel Rahim, A. Zimmer, H. B. Hassan, R. M. Abdel Hameed, J. Power Sources, 2005, 144, 35.

    28. [28]

      [28] K. Na, W. Park, Y. Seo, R. Ryoo, Chem. Mater., 2011, 23, 1273.

    29. [29]

      [29] H. T. Wang, Z. B. Wang, Y. S. Yan, Chem. Commun., 2000, 2333.

    30. [30]

      [30] T. Rohani, M. A. Taher, Talanta, 2009, 78, 743.

    31. [31]

      [31] S. N. Azizi, S. Ghasemi, S. Kavian, Biosens. Bioelectron., 2014, 62, 1.

    32. [32]

      [32] A. Zimmer, D. Mönter, W. Reschetilowski, J. Appl. Electrochem., 2003, 33, 933.

    33. [33]

      [33] P. V. Samant, J. B. Fernandes, J. Power Sources, 2004, 125, 172.

    34. [34]

      [34] E. Yasumoto, K. Hatoh, T. Gamou, US Patent 5 702 838, 1997.

    35. [35]

      [35] J-P. Jeong, O-S. Lee, K. Yang, Bull. Korean Chem. Soc, 2002, 23, 8.

    36. [36]

      [36] C. M. V. B. Almeida, B. F. Giannetti, Electrochem. Commun., 2002, 4, 985.

    37. [37]

      [37] Z. Ghasemi, H. Younesi, Waste Biomass Valor., 2012, 3, 61.

    38. [38]

      [38] M. M. Ardakani, Z. Akrami, H. Kazemian, H. R. Zare, J. Electroanal. Chem., 2006, 586, 31.

    39. [39]

      [39] S. N. Azizi, S. Ghasemi, E. Chiani, Electrochim. Acta, 2013, 88, 463.

    40. [40]

      [40] E. Laviron, J. Electroanal. Chem. Interf. Electrochem., 1979, 101, 19.

    41. [41]

      [41] H. X. Luo, Z. J. Shi, N. Q. Li, Z. N. Gu, Q. K. Zhuang, Anal. Chem., 2001, 73, 915.

    42. [42]

      [42] L. Zheng, J. F. Song, J. Solid State Electrochem., 2010, 14, 43.

    43. [43]

      [43] C. Zhao, M. Li, K. Jiao, J. Anal. Chem., 2006, 61, 1204.

    44. [44]

      [44] J. B. Raoof, M. A. Karimi, S. R. Hosseini, S. Mangelizade, Int. J. Hydrogen Energy, 2011, 36, 13281.

    45. [45]

      [45] S. N. Azizi, S. Ghasemi, H. Yazdani-Sheldarrei, Int. J. Hydrogen Energy, 2013, 38, 12774.

    46. [46]

      [46] R. Devasenathipathy, V. Mani, S. M. Chen, Talanta, 2014, 124, 43.

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    3. [3]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    4. [4]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    5. [5]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    6. [6]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    7. [7]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

    8. [8]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    9. [9]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    20. [20]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(0)
  • Abstract views(637)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return