Citation:
Safura Kavian, Seyed Naser Azizi, Shahram Ghasemi. Preparation of a novel supported electrode comprising a nickel (II) hydroxide-modified carbon paste electrode (Ni(OH)2-X/CPE) for the electrocatalytic oxidation of formaldehyde[J]. Chinese Journal of Catalysis,
;2016, 37(1): 159-168.
doi:
10.1016/S1872-2067(15)60990-1
-
We prepared a novel nickel (II) hydroxide-modified carbon paste electrode (Ni(OH)2-X/CPE) for the electrocatalytic oxidation of formaldehyde. The electrode was prepared by a simple method without the use of linking chemicals. The prepared Ni(OH)2-X/CPE material was characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. The electrochemical performance of the proposed electrode was investigated using cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. The results indicate that Ni(OH)2-X/CPE exhibits good electrocatalytic activity with regards to formaldehyde oxidation owing to its nanoporous structure and the large surface area of zeolite X. The values of the electron transfer coefficient and the catalytic rate constant were 0.7 and 6.1 × 104 cm3/(mol·s), respectively. Therefore, the proposed electrode, which showed remarkable electroactivity with regards to formaldehyde oxidation with long-term stability and good reproducibility, could be useful in fuel cells.
-
-
-
[1]
[1] Y. Y. Shao, G. P. Yin, Z. B. Wang, Y. Z. Gao, J. Power Sources, 2007, 167, 235.
-
[2]
[2] H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang, D. P. Wilkinson, J. Power Sources, 2006, 155, 95.
-
[3]
[3] N. W. DeLuca, Y. A. Elabd, J. Polym. Sci. B, 2006, 44, 2201.
-
[4]
[4] E. Antolini, Mater. Chem. Phys., 2003, 78, 563.
-
[5]
[5] H. Ahmad, S. K. Kamarudin, U. A. Hasran, W. R. W. Daud, Int. J. Hydrogen Energy, 2010, 35, 2160.
-
[6]
[6] Z. Wang, Z. Z. Zhu, J. Shi, H. L. Li, Appl. Surf. Sci., 2007, 253, 8811.
-
[7]
[7] C. M. Jiang, H. Chen, C. Yu, S. Zhang, B. H. Liu, J. L. Kong, Electrochim. Acta, 2009, 54, 1134.
-
[8]
[8] H. M. Villullas, F. I. Mattos-Costa, P. A. P. Nascente, L. O. S. Bulhões, Electrochim. Acta, 2004, 49, 3909.
-
[9]
[9] V. Selvaraj, M. Alagar, K. S. Kumar, Appl. Catal. B, 2007, 75, 129.
-
[10]
[10] D. L. Wang, J. Wang, S. F. Lu, S. P. Jiang, J. Electroanal. Chem., 2014, 712, 55.
-
[11]
[11] Y. N. Yu, T. Wang, Y. Y. Fu, W. Su, J. B. Hu, Int. J. Hydrogen Energy, 2014, 39, 17617.
-
[12]
[12] L. A. Hutton, M. Vidotti, A. N. Patel, M. E. Newton, P. R. Unwin, J. V. Macpherson, J. Phys. Chem. C, 2011, 115, 1649.
-
[13]
[13] M. Vidotti, S. I. C. de Torresi, L. T. Kubota, Sens. Actuators B, 2008, 135, 245.
-
[14]
[14] Q. F. Yi, J. J. Zhang, W. Huang, X. P. Liu, Catal. Commun., 2007, 8, 1017.
-
[15]
[15] I. Danaee, M. Jafarian, A. Mirzapoor, F. Gobal, M. G. Mahjani, Electrochim. Acta, 2010, 55, 2093.
-
[16]
[16] A. Arvinte, A. C. Westermann, A. M. Sesay, V. Virtanen, Sens. Actuators B, 2010, 150, 756.
-
[17]
[17] A. Kapałka, A. Cally, S. Neodo, C. Comninellis, M. Wächter, K. M. Udert, Electrochem. Commun., 2010, 12, 18.
-
[18]
[18] B. P. Lu, J. Bai, X. J. Bo, L. D. Zhu, L. P. Guo, Electrochim. Acta, 2010, 55, 8724.
-
[19]
[19] A. Safavi, N. Maleki, E. Farjami, Biosens. Bioelectron., 2009, 24, 1655.
-
[20]
[20] R. Ojani, J. B. Raoof, S. R. H. Zavvarmahalleh, J. Solid State Electrochem., 2009, 13, 1605.
-
[21]
[21] J. B. Raoof, A. Omrani, R. Ojani, F. Monfared, J. Electroanal. Chem., 2009, 633, 153.
-
[22]
[22] J. B. Raoof, R. Ojani, S. Abdi, S. R. Hosseini, Int. J. Hydrogen Energy, 2012, 37, 2137.
-
[23]
[23] R. Ojani, J. B. Raoof, S. Safshekan, J. Appl. Electrochem., 2012, 42, 81.
-
[24]
[24] M. N. Ding, Y. F. Tang, A. Star, J. Phys. Chem. Lett., 2013, 4, 147.
-
[25]
[25] G. Y. Gao, D. J. Guo, H. L. Li, J. Power Sources, 2006, 162, 1094.
-
[26]
[26] R. W. Murry, A. G. Ewing, R. A. Durst, Anal. Chem., 1987, 59, 379.
-
[27]
[27] M. W. Khalil, M. A. Abdel Rahim, A. Zimmer, H. B. Hassan, R. M. Abdel Hameed, J. Power Sources, 2005, 144, 35.
-
[28]
[28] K. Na, W. Park, Y. Seo, R. Ryoo, Chem. Mater., 2011, 23, 1273.
-
[29]
[29] H. T. Wang, Z. B. Wang, Y. S. Yan, Chem. Commun., 2000, 2333.
-
[30]
[30] T. Rohani, M. A. Taher, Talanta, 2009, 78, 743.
-
[31]
[31] S. N. Azizi, S. Ghasemi, S. Kavian, Biosens. Bioelectron., 2014, 62, 1.
-
[32]
[32] A. Zimmer, D. Mönter, W. Reschetilowski, J. Appl. Electrochem., 2003, 33, 933.
-
[33]
[33] P. V. Samant, J. B. Fernandes, J. Power Sources, 2004, 125, 172.
-
[34]
[34] E. Yasumoto, K. Hatoh, T. Gamou, US Patent 5 702 838, 1997.
-
[35]
[35] J-P. Jeong, O-S. Lee, K. Yang, Bull. Korean Chem. Soc, 2002, 23, 8.
-
[36]
[36] C. M. V. B. Almeida, B. F. Giannetti, Electrochem. Commun., 2002, 4, 985.
-
[37]
[37] Z. Ghasemi, H. Younesi, Waste Biomass Valor., 2012, 3, 61.
-
[38]
[38] M. M. Ardakani, Z. Akrami, H. Kazemian, H. R. Zare, J. Electroanal. Chem., 2006, 586, 31.
-
[39]
[39] S. N. Azizi, S. Ghasemi, E. Chiani, Electrochim. Acta, 2013, 88, 463.
-
[40]
[40] E. Laviron, J. Electroanal. Chem. Interf. Electrochem., 1979, 101, 19.
-
[41]
[41] H. X. Luo, Z. J. Shi, N. Q. Li, Z. N. Gu, Q. K. Zhuang, Anal. Chem., 2001, 73, 915.
-
[42]
[42] L. Zheng, J. F. Song, J. Solid State Electrochem., 2010, 14, 43.
-
[43]
[43] C. Zhao, M. Li, K. Jiao, J. Anal. Chem., 2006, 61, 1204.
-
[44]
[44] J. B. Raoof, M. A. Karimi, S. R. Hosseini, S. Mangelizade, Int. J. Hydrogen Energy, 2011, 36, 13281.
-
[45]
[45] S. N. Azizi, S. Ghasemi, H. Yazdani-Sheldarrei, Int. J. Hydrogen Energy, 2013, 38, 12774.
-
[46]
[46] R. Devasenathipathy, V. Mani, S. M. Chen, Talanta, 2014, 124, 43.
-
[1]
-
-
-
[1]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[2]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[3]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[4]
Sumiya Akter Dristy , Md Ahasan Habib , Shusen Lin , Mehedi Hasan Joni , Rutuja Mandavkar , Young-Uk Chung , Md Najibullah , Jihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079
-
[5]
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
-
[6]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[7]
Shiqi Zhang , Heng Zhang , Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124
-
[8]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[9]
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
-
[10]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[11]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[12]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[13]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[14]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[15]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[16]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[17]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[18]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[19]
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
-
[20]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(637)
- HTML views(85)