Citation: Pingbo Zhang, Yan Zhou, Mingming Fan, Pingping Jiang. Catalytic synthesis of diethyl carbonate with supported Pd-Cu bimetallic nanoparticle catalysts: Cu(I) as the active species[J]. Chinese Journal of Catalysis, ;2015, 36(11): 2036-2043. doi: 10.1016/S1872-2067(15)60973-1 shu

Catalytic synthesis of diethyl carbonate with supported Pd-Cu bimetallic nanoparticle catalysts: Cu(I) as the active species

  • Corresponding author: Mingming Fan, 
  • Received Date: 29 August 2015
    Available Online: 16 September 2015

    Fund Project: 国家自然科学基金(21106054). (21106054)

  • Cupric oxide (CuO) and copper-cuprous oxide (Cu-Cu2O) nanoparticles were prepared by a simple hydrothermal method for the synthesis of diethyl carbonate (DEC) from ethanol. During these syntheses, varying NaOH and glucose concentrations were applied to explore and pinpoint the active species. It was found that PdCl2/CuO and PdCl2/Cu-Cu2O both catalysts exhibited good thermal stability and morphology. The results of catalytic tests showed that the catalysts prepared with 5 mol/L NaOH show superior catalytic performances because of their lower extent of agglomeration. It is noteworthy that the PdCl2/Cu-Cu2O catalysts were the most active, especially the PdCl2/Cu-Cu2O catalyst prepared with 10 mmol glucose and having a higher Cu2O concentration. In Pd(II)-Cu(II) (PdCl2/CuO) catalysts, there is an induction period, during which Pd(II) is reduced to Pd(0), that must occur prior to electron transfer between Pd and Cu, and this can slow the catalytic reaction. To further pinpoint the active species, PdCl2/Cu-Cu2O catalysts with different Cu2O contents were prepared by controlling the dosages of glucose. The maximum DEC yield obtained with these catalysts was 151.9 mg·g-1·h-1, corresponding to an ethanol conversion of 7.2% and 97.9% DEC selectivity on an ethanol basis. Therefore, it was concluded that Cu+ was the active species in this catalytic system, possibly because a higher proportion of Cu+ reduces the Pd2+ concentration and limits the CO oxidation side reaction, thus increasing DEC selectivity. In addition, Cu+ promotes electron transfer between Pd and Cu without an induction period, which could also promote the catalytic activity.
  • 加载中
    1. [1]

      [1] Pacheco M A, Marshall C L. Energy Fuels, 1997, 11: 2

    2. [2]

      [2] Horvath I T. Green Chem, 2008, 10: 1024

    3. [3]

      [3] Moumouzias G, Ritzoulis G, Siapkas D, Terzidis D. J Power Sources, 2003, 122: 57

    4. [4]

      [4] Herstedt M, Stjerndahl M, Gustafsson T, Edstrom K. Electrochem Commun, 2003, 5: 467

    5. [5]

      [5] Muskat I E, Strain F. US Patent 2379250. 1945

    6. [6]

      [6] Mo W L, Li G X, Zhu Y Q, Xiong H, Mei F M. Chin J Catal (莫婉玲, 李光兴, 朱永强, 熊辉, 梅付名. 催化学报), 2003, 24: 3

    7. [7]

      [7] Zielinska-Nadolska I, Warmuzinski K, Richter J. Catal Today, 2006, 114: 226

    8. [8]

      [8] Zhang Z, Ma X B, Zhang J, He F, Wang S P. J Mol Catal A, 2005, 227: 141

    9. [9]

      [9] Gao X C, Ma X B, Wang S P, Li Z H. Chin J Catal (高晓晨, 马新宾, 王胜平, 李振花. 催化学报), 2007, 28: 720

    10. [10]

      [10] Ryu J Y. US Patent 5902894. 1999

    11. [11]

      [11] Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K. Catal Lett, 1999, 58: 225

    12. [12]

      [12] Dunn B C, Guenneau C, Hilton S A, Pahnke J, Eyring E M, Dworzanski J, Meuzelaar H L C, Hu J Z, Solum M S, Pugmire R J. Energy Fuels, 2002, 16: 177

    13. [13]

      [13] Briggs D N, Lawrence K H, Bell A T. Appl Catal A, 2009, 366: 71

    14. [14]

      [14] Briggs D N, Bong G, Leong E, Oei K, Lestari G, Bell A T. J Catal, 2010, 276: 215

    15. [15]

      [15] Zhang P B, Huang S Y, Wang S P, Ma X B. Chem Eng J, 2011, 172: 526

    16. [16]

      [16] Zhang P B, Ma X B. Chem Eng J, 2010, 163: 93

    17. [17]

      [17] Huang S Y, Wang Y, Wang Z Z, Yan B, Wang S P, Gong J L, Ma X B. Appl Catal A, 2012, 417-418: 236

    18. [18]

      [18] Zhang P B, Zhang Z, Wang S P, Ma X B. Catal Commun, 2007, 8: 21

    19. [19]

      [19] Zheng H Y, Ren J, Zhou Y, Niu Y Y, Li Z. J Fuel Chem Technol, 2011, 39: 282

    20. [20]

      [20] Richter M, Fait M J G, Eckelt R, Schreier E, Schneider M, Pohl M M, Fricke R. Appl Catal B, 2007, 73: 269

    21. [21]

      [21] Huang S Y, Chen P Z, Yan B, Wang S P, Shen Y L, Ma X B. Ind Eng Chem Res, 2013, 52: 6349

    22. [22]

      [22] Huang S Y, Zhang J J, Wang Y, Chen P Z, Wang S P, Ma X B. Ind Eng Chem Res, 2014, 53: 5838

    23. [23]

      [23] Zhang Y H, Drake I J, Briggs D N, Bell A T. J Catal, 2006, 244: 219

    24. [24]

      [24] Li Z, Wen C M, Zheng H Y, Xie K C. Chem J Chin Univ, 2010, 31: 145

    25. [25]

      [25] Ding X S, Dong X M, Kuang D T, Wang S F, Zhao X Q, Wang Y J. Chem Eng J, 2014, 240: 221

    26. [26]

      [26] Zhang R G, Liu H Y, Zheng H Y, Ling L X, Li Z, Wang B J. Appl Surf Sci, 2011, 257: 4787

    27. [27]

      [27] Zhang R G, Zheng H Y, Wang B J, Li Z. Chem J Chin Univ, 2010, 31: 1246

    28. [28]

      [28] King S T. Catal Today, 1997, 33: 173

    29. [29]

      [29] Yan B, Huang S Y, Wang S P, Ma X B. ChemCatChem, 2014, 6: 2671

    30. [30]

      [30] Chen Z W, Jiao Z, Pan D Y, Li Z, Wu M H, Shek C H, Wu C M L, Lai J K L. Chem Rev, 2012, 112: 3833

    31. [31]

      [31] Lignier P, Bellabarba R, Tooze R P. Chem Soc Rev, 2012, 41: 1708

    32. [32]

      [32] Park J C, Kim J, Kwon H, Song H. Adv Mater, 2009, 21: 803

    33. [33]

      [33] Chanda K, Rej S, Huang M H. Chem Eur J, 2013, 19: 16036

    34. [34]

      [34] Li L L, Nan C Y, Peng Q, Li Y D. Chem Eur J, 2012, 18: 10491

    35. [35]

      [35] Zhong Z Y, Ng V, Luo J Z, Teh S P, Teo J, Gedanken A. Langmuir, 2007, 23: 5971

    36. [36]

      [36] Neupane M P, Kim Y K, Park I S, Kim K A, Lee M H, Bae T S. Surf Interface Anal, 2009, 41: 259

    37. [37]

      [37] Cao M H, Hu C W, Wang Y H, Guo Y H, Guo C X, Wang E B. Chem Commun, 2003: 1884

    38. [38]

      [38] Zhang Z, Ma X B, Zhang P B, Li Y M, Wang S P. J Mol Catal A, 2007, 266: 202

    39. [39]

      [39] Zheng X B, Bell A T. J Phys Chem C, 2008, 112: 5043

    40. [40]

      [40] Engeldinger J, Domke C, Richter M, Bentrup U. Appl Catal A, 2010, 382: 303

    41. [41]

      [41] Radi A, Pradhan D, Sohn Y, Leung K T. ACS Nano, 2010, 4: 1553

    42. [42]

      [42] Ghodselahi T, Vesaghi M A, Shafiekhani A, Baghizadeh A, Lameii M. Appl Surf Sci, 2008, 255: 2730

  • 加载中
    1. [1]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    2. [2]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    6. [6]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    9. [9]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    10. [10]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    14. [14]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(0)
  • Abstract views(362)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return