Citation:
Ilkeun Lee, Ji Bong Joo, Mohammadreza Shokouhimehr. Graphene derivatives supported nanocatalysts for oxygen reduction reaction[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1799-1810.
doi:
10.1016/S1872-2067(15)60971-8
-
Very recent progress on the graphene derivatives supported variable nanocatalysts for oxygen reduction reaction (ORR) in fuel cell is reviewed. First, common electrochemical techniques to characterize graphene-based electrocatalysts are mentioned. Second, recent updates on graphene-derived electrocatalysts are introduced. In this part, both electrochemical activity and stability of Pt catalysts can be improved when they are supported by reduced graphene oxide (RGO). Other noble-metal catalysts including Pd, Au, and Ag showing comparable performance have been investigated. The stability of Pd catalyst is enhanced by RGO or few-layered graphene support. Synthetic approaches for Au or Ag catalysts supported on graphene oxide are discussed. In addition, non-noble transition metals in N4-chelate complexes can reduce oxygen electrochemically. Fe and Co are cheap alternative catalysts for ORR. In most cases, the stability and tolerance issues are overcome well, but their overall performances don't seem to surpass Pt/C catalyst yet.
-
Keywords:
- Graphene,
- Oxygen reduction reaction,
- Electrocatalyst,
- Nanocatalyst
-
-
-
[1]
[1] Zhu C Z, Dong S J. Nanoscale, 2013, 5: 1753
-
[2]
[2] Guo S J, Zhang S, Sun S H. Angew Chem Int Ed, 2013, 52: 8526
-
[3]
[3] Wang Y J, Wilkinson D P, Zhang J J. Chem Rev, 2011, 111: 7625
-
[4]
[4] Song C J, Zhang J J. In: Zhang J Ed. PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer, 2008. 89
-
[5]
[5] Liu Y, Wu Y Y, Lü G J, Pu T, He X Q, Cui L L. Electrochim Acta, 2013, 112: 269
-
[6]
[6] Liu J F, Takeshi D, Orejon D, Sasaki K, Lyth S M. J Electrochem Soc, 2014, 161: F544
-
[7]
[7] Monteverde Videla A H A, Ban S, Specchia S, Zhang L, Zhang J J. Carbon, 2014, 76: 386
-
[8]
[8] Jin S, Chen M, Dong H F, He B Y, Lu H T, Su L, Dai W H, Zhang Q C, Zhang X J. J Power Sources, 2015, 274: 1173
-
[9]
[9] Ghanbarlou H, Rowshanzamir S, Kazeminasab B, Parnian M J. J Power Sources, 2015, 273: 981
-
[10]
[10] Knights S D, Colbow K M, St-Pierre J, Wilkinson D P. J Power Sources, 2004, 127: 127
-
[11]
[11] Yuan X Z, Wang H J. In: Zhang J Ed. PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer, 2008. 1
-
[12]
[12] He D P, Cheng K, Li H G, Peng T, Xu F, Mu S C, Pan M. Langmuir, 2012, 28: 3979
-
[13]
[13] Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. J Am Chem Soc, 2012, 134: 12326
-
[14]
[14] He D P, Cheng K, Peng T, Sun X L, Pan M, Mu S C. J Mater Chem, 2012, 22: 21298
-
[15]
[15] Yu X Q, Wang H, Guo L P, Wang L. Chem Asian J, 2014, 9: 3221
-
[16]
[16] Seo M H, Choi S M, Kim H J, Kim W B. Electrochem Commun, 2011, 13: 182
-
[17]
[17] Kong X K, Chen Q W, Lun Z Y. ChemPhysChem, 2014, 15: 344
-
[18]
[18] Huang Y X, Xie J F, Zhang X, Xiong L, Yu H Q. ACS Appl Mater Interf, 2014, 6: 15795
-
[19]
[19] Truong-Phuoc L, Pham-Huu C, Da Costa V, Janowska I. Chem Commun, 2014, 50: 14433
-
[20]
[20] Janowska I, Vigneron F, Begin D, Ersen O, Bernhardt P, Romero T, Ledoux M J, Pham-Huu C. Carbon, 2012, 50: 3106
-
[21]
[21] Haruta M, Yamada N, Kobayashi T, Iijima S. J Catal, 1989, 115: 301
-
[22]
[22] Haruta M. Catal Today, 1997, 36: 153
-
[23]
[23] Lee I, Joo J B, Yin Y, Zaera F. Angew Chem Int Ed, 2011, 50: 10208
-
[24]
[24] Wang S N, Zhang M C, Zhang W Q. ACS Catal, 2011, 1: 207
-
[25]
[25] Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Langmuir, 2009, 25: 6438
-
[26]
[26] Geim A K, Novoselov K S. Nat Mater, 2007, 6: 183
-
[27]
[27] Allen M J, Tung C V, Kaner B R. Chem Rev, 2010, 110: 132
-
[28]
[28] Xu S J, Wu P Y. J Mater Chem A, 2014, 2: 13682
-
[29]
[29] Lightcap I V, Kosel T H, Kamat P V. Nano Lett, 2010, 10: 577
-
[30]
[30] Wu D Q, Zhang F, Liu P, Feng X L. Chem Eur J, 2011, 17: 10804
-
[31]
[31] Xu S J, Yong L,Wu P Y. ACS Appl Mater Interfaces, 2013, 5: 654
-
[32]
[32] Dhavale V M, Gaikwad S S, Kurungot S. J Mater Chem A, 2014, 2: 1383
-
[33]
[33] Zhang P P, Huang Y, Lu X, Zhang S Y, Li J F, Wei G, Su Z Q. Langmuir, 2014, 30: 8980
-
[34]
[34] Wang F B, Wang J, Shao L, Zhao Y, Xia X H. Electrochem Commun, 2014, 38: 82
-
[35]
[35] Govindhan M, Chen A. J Power Sources, 2015, 274: 928
-
[36]
[36] Li X R, Li X L, Xu M C, Xu J J, Chen H Y. J Mater Chem A, 2014, 2: 1697
-
[37]
[37] Kim S S, Kim Y R, Chung T D, Sohn B H. Adv Funct Mater, 2014, 24: 2764
-
[38]
[38] Liu F, Choi J Y, Seo T S. Chem Commun, 2010, 46: 2844
-
[39]
[39] Liu J B, Li Y L, Li Y M, Li J H, Deng Z X. J Mater Chem, 2010, 20: 900
-
[40]
[40] Imura Y, Maezawa A, Morita C, Kawai T. Langmuir, 2012, 28: 14998
-
[41]
[41] Yin H J, Tang H J, Wang D, Gao Y, Tang Z Y. ACS Nano, 2012, 6: 8288
-
[42]
[42] Ji X H, Song X N, Li J, Bai Y B, Yang W S, Peng X G. J Am Chem Soc, 2007, 129: 13939
-
[43]
[43] Huo Z Y, Tsung C K, Huang W Y, Zhang X F, Yang P D. Nano Lett, 2008, 8: 2041
-
[44]
[44] Choi H C, Shim M, Bangsaruntip S, Dai H J. J Am Chem Soc, 2002, 124: 9058
-
[45]
[45] Yuan L Z, Jiang L H, Liu J, Xia Z X, Wang S L, Sun G Q. Electrochim Acta, 2014, 135: 168
-
[46]
[46] Liu R J, Yu X L, Zhang G J, Zhang S J, Cao H B, Dolbecq A, Mialane P, Keita B, Zhi L J. J Mater Chem A, 2013, 1: 11961
-
[47]
[47] Davis D J, Raji A R O, Lambert T N, Vigil J A, Li L, Nan K, Tour J M. Electroanalysis, 2014, 26: 164
-
[48]
[48] Kumar S, Selvaraj C, Scanlon L G, Munichandraiah N. Phys Chem Chem Phys, 2014, 16: 22830
-
[49]
[49] Lim E J, Choi S M, Seo M H, Kim Y, Lee S, Kim W B. Electrochem Commun, 2013, 28: 100
-
[50]
[50] Genies L, Faure R, Durand R. Electrochim Acta, 1998, 44: 1317
-
[51]
[51] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H. Adv Funct Mater, 2009, 19: 1987
-
[52]
[52] Jasinski R J. Nature, 1964, 201: 1212
-
[53]
[53] Jiang Y Y, Lu Y Z, Lü X Y, Han D X, Zhang Q X, Niu L, Chen W. ACS Catal, 2013, 3: 1263
-
[54]
[54] Zhao X N, Zhang P P, Chen Y T, Su Z Q, Wei G. Nanoscale, 2015, 7: 5080
-
[55]
[55] Tiwari J N, Kemp K C, Nath K, Tiwari R N, Nam H G, Kim K S. ACS Nano, 2013, 7: 9223
-
[56]
[56] Chen H S, Liang Y T, Chen T Y, Tseng Y C, Liu C W, Chung S R, Hsieh C T, Lee C E, Wang K W. Chem Commun, 2014, 50: 11165
-
[57]
[57] Tiido K, Alexeyeva N, Couillard M, Bock C, MacDougall B R, Tammeveski K. Electrochim Acta, 2013, 107: 509
-
[58]
[58] Tan Y M, Xu C F, Chen G X, Zheng N F, Xie Q J. Energy Environ Sci, 2012, 5: 6923
-
[59]
[59] Chou C C, Liu C H, Chen B H. Energy, 2014, 70: 231
-
[60]
[60] Tiwari J N, Nath K, Kumar S, Tiwari R N, Kemp C, Le N H, Youn D H, Lee J S, Kim K S. Nat Commun, 2013, 4: 3221
-
[61]
[61] Nam K W, Song J, Oh K H, Choo M J, Park H A, Park J K, Choi J W. J Solid State Electrochem, 2013, 17: 767
-
[62]
[62] Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. J Am Chem Soc, 2012, 134: 12326
-
[63]
[63] Carrera-Cerritos R, Baglio V, Aricò A S, Ledesma-García J, Sgroi M F, Pullini D, Pruna A J, Mataix D B, Fuentes-Ramírez R, Arriaga L G. Appl Catal B, 2014, 144: 554
-
[64]
[64] Kakaei K, Gharibi H. Energy, 2014, 65: 166
-
[65]
[65] Zhang P D, Zhang X Y, Zhang S Y, Lu X, Li Q, Su Z Q, Wei G. J Mater Chem B, 2013, 1: 6525
-
[66]
[66] Yu D B, Yao J F, Qiu L, Wu Y Z, Li L X, Feng Y, Liu Q, Li D, Wang H T. RSC Adv, 2013, 3: 11552
-
[67]
[67] Yin H, Zhang C Z, Liu F, Hou Y L. Adv Funct Mater, 2014, 24: 2930
-
[68]
[68] Gao X, Wang J F, Ma Z, Ye J S. Electrochim Acta, 2014, 130: 543
-
[69]
[69] He C Y, Zhang J J, Shen P K. J Mater Chem A, 2014, 2: 3231
-
[70]
[70] Lin L, Li M, Jang L Q, Li Y F, Liu D J, He X Q, Cui L L. J Power Sources, 2014, 268: 269
-
[71]
[71] Li M, Bo X J, Zhang Y F, Han C, Guo L P. J Power Sources, 2014, 264: 114
-
[72]
[72] Lim C S, Ambrosi, A, Sofer Z, Pumera M. Nanoscale, 2014, 6: 7391
-
[73]
[73] Taniguchi T, Tateishi H, Miyamoto S, Hatakeyama K, Ogata C, Funatsu A, Hayami S, Makinose Y, Matsushita N, Koinuma M, Matsumoto Y. Part Part Syst Charact, 2013, 30: 1063
-
[74]
[74] Zheng B, Wang J, Wang F B, Xia X H. J Mater Chem A, 2014, 2: 9079
-
[75]
[75] Jiang Y Y, Lu Y Z, Wang X D, Bao Y, Chen W, Niu L. Nanoscale, 2014, 6: 15066
-
[1]
-
-
-
[1]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[4]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[5]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[6]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[7]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[8]
Sumiya Akter Dristy , Md Ahasan Habib , Shusen Lin , Mehedi Hasan Joni , Rutuja Mandavkar , Young-Uk Chung , Md Najibullah , Jihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079
-
[9]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[10]
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
-
[11]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[12]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[13]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[14]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[15]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[16]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[17]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[18]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[19]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[20]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(486)
- HTML views(25)