Citation: Ilkeun Lee, Ji Bong Joo, Mohammadreza Shokouhimehr. Graphene derivatives supported nanocatalysts for oxygen reduction reaction[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1799-1810. doi: 10.1016/S1872-2067(15)60971-8 shu

Graphene derivatives supported nanocatalysts for oxygen reduction reaction

  • Corresponding author: Ilkeun Lee,  Ji Bong Joo,  Mohammadreza Shokouhimehr, 
  • Received Date: 30 June 2015
    Available Online: 9 September 2015

  • Very recent progress on the graphene derivatives supported variable nanocatalysts for oxygen reduction reaction (ORR) in fuel cell is reviewed. First, common electrochemical techniques to characterize graphene-based electrocatalysts are mentioned. Second, recent updates on graphene-derived electrocatalysts are introduced. In this part, both electrochemical activity and stability of Pt catalysts can be improved when they are supported by reduced graphene oxide (RGO). Other noble-metal catalysts including Pd, Au, and Ag showing comparable performance have been investigated. The stability of Pd catalyst is enhanced by RGO or few-layered graphene support. Synthetic approaches for Au or Ag catalysts supported on graphene oxide are discussed. In addition, non-noble transition metals in N4-chelate complexes can reduce oxygen electrochemically. Fe and Co are cheap alternative catalysts for ORR. In most cases, the stability and tolerance issues are overcome well, but their overall performances don't seem to surpass Pt/C catalyst yet.
  • 加载中
    1. [1]

      [1] Zhu C Z, Dong S J. Nanoscale, 2013, 5: 1753

    2. [2]

      [2] Guo S J, Zhang S, Sun S H. Angew Chem Int Ed, 2013, 52: 8526

    3. [3]

      [3] Wang Y J, Wilkinson D P, Zhang J J. Chem Rev, 2011, 111: 7625

    4. [4]

      [4] Song C J, Zhang J J. In: Zhang J Ed. PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer, 2008. 89

    5. [5]

      [5] Liu Y, Wu Y Y, Lü G J, Pu T, He X Q, Cui L L. Electrochim Acta, 2013, 112: 269

    6. [6]

      [6] Liu J F, Takeshi D, Orejon D, Sasaki K, Lyth S M. J Electrochem Soc, 2014, 161: F544

    7. [7]

      [7] Monteverde Videla A H A, Ban S, Specchia S, Zhang L, Zhang J J. Carbon, 2014, 76: 386

    8. [8]

      [8] Jin S, Chen M, Dong H F, He B Y, Lu H T, Su L, Dai W H, Zhang Q C, Zhang X J. J Power Sources, 2015, 274: 1173

    9. [9]

      [9] Ghanbarlou H, Rowshanzamir S, Kazeminasab B, Parnian M J. J Power Sources, 2015, 273: 981

    10. [10]

      [10] Knights S D, Colbow K M, St-Pierre J, Wilkinson D P. J Power Sources, 2004, 127: 127

    11. [11]

      [11] Yuan X Z, Wang H J. In: Zhang J Ed. PEM Fuel Cell Electrocatalysts and Catalyst Layers. London: Springer, 2008. 1

    12. [12]

      [12] He D P, Cheng K, Li H G, Peng T, Xu F, Mu S C, Pan M. Langmuir, 2012, 28: 3979

    13. [13]

      [13] Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. J Am Chem Soc, 2012, 134: 12326

    14. [14]

      [14] He D P, Cheng K, Peng T, Sun X L, Pan M, Mu S C. J Mater Chem, 2012, 22: 21298

    15. [15]

      [15] Yu X Q, Wang H, Guo L P, Wang L. Chem Asian J, 2014, 9: 3221

    16. [16]

      [16] Seo M H, Choi S M, Kim H J, Kim W B. Electrochem Commun, 2011, 13: 182

    17. [17]

      [17] Kong X K, Chen Q W, Lun Z Y. ChemPhysChem, 2014, 15: 344

    18. [18]

      [18] Huang Y X, Xie J F, Zhang X, Xiong L, Yu H Q. ACS Appl Mater Interf, 2014, 6: 15795

    19. [19]

      [19] Truong-Phuoc L, Pham-Huu C, Da Costa V, Janowska I. Chem Commun, 2014, 50: 14433

    20. [20]

      [20] Janowska I, Vigneron F, Begin D, Ersen O, Bernhardt P, Romero T, Ledoux M J, Pham-Huu C. Carbon, 2012, 50: 3106

    21. [21]

      [21] Haruta M, Yamada N, Kobayashi T, Iijima S. J Catal, 1989, 115: 301

    22. [22]

      [22] Haruta M. Catal Today, 1997, 36: 153

    23. [23]

      [23] Lee I, Joo J B, Yin Y, Zaera F. Angew Chem Int Ed, 2011, 50: 10208

    24. [24]

      [24] Wang S N, Zhang M C, Zhang W Q. ACS Catal, 2011, 1: 207

    25. [25]

      [25] Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Langmuir, 2009, 25: 6438

    26. [26]

      [26] Geim A K, Novoselov K S. Nat Mater, 2007, 6: 183

    27. [27]

      [27] Allen M J, Tung C V, Kaner B R. Chem Rev, 2010, 110: 132

    28. [28]

      [28] Xu S J, Wu P Y. J Mater Chem A, 2014, 2: 13682

    29. [29]

      [29] Lightcap I V, Kosel T H, Kamat P V. Nano Lett, 2010, 10: 577

    30. [30]

      [30] Wu D Q, Zhang F, Liu P, Feng X L. Chem Eur J, 2011, 17: 10804

    31. [31]

      [31] Xu S J, Yong L,Wu P Y. ACS Appl Mater Interfaces, 2013, 5: 654

    32. [32]

      [32] Dhavale V M, Gaikwad S S, Kurungot S. J Mater Chem A, 2014, 2: 1383

    33. [33]

      [33] Zhang P P, Huang Y, Lu X, Zhang S Y, Li J F, Wei G, Su Z Q. Langmuir, 2014, 30: 8980

    34. [34]

      [34] Wang F B, Wang J, Shao L, Zhao Y, Xia X H. Electrochem Commun, 2014, 38: 82

    35. [35]

      [35] Govindhan M, Chen A. J Power Sources, 2015, 274: 928

    36. [36]

      [36] Li X R, Li X L, Xu M C, Xu J J, Chen H Y. J Mater Chem A, 2014, 2: 1697

    37. [37]

      [37] Kim S S, Kim Y R, Chung T D, Sohn B H. Adv Funct Mater, 2014, 24: 2764

    38. [38]

      [38] Liu F, Choi J Y, Seo T S. Chem Commun, 2010, 46: 2844

    39. [39]

      [39] Liu J B, Li Y L, Li Y M, Li J H, Deng Z X. J Mater Chem, 2010, 20: 900

    40. [40]

      [40] Imura Y, Maezawa A, Morita C, Kawai T. Langmuir, 2012, 28: 14998

    41. [41]

      [41] Yin H J, Tang H J, Wang D, Gao Y, Tang Z Y. ACS Nano, 2012, 6: 8288

    42. [42]

      [42] Ji X H, Song X N, Li J, Bai Y B, Yang W S, Peng X G. J Am Chem Soc, 2007, 129: 13939

    43. [43]

      [43] Huo Z Y, Tsung C K, Huang W Y, Zhang X F, Yang P D. Nano Lett, 2008, 8: 2041

    44. [44]

      [44] Choi H C, Shim M, Bangsaruntip S, Dai H J. J Am Chem Soc, 2002, 124: 9058

    45. [45]

      [45] Yuan L Z, Jiang L H, Liu J, Xia Z X, Wang S L, Sun G Q. Electrochim Acta, 2014, 135: 168

    46. [46]

      [46] Liu R J, Yu X L, Zhang G J, Zhang S J, Cao H B, Dolbecq A, Mialane P, Keita B, Zhi L J. J Mater Chem A, 2013, 1: 11961

    47. [47]

      [47] Davis D J, Raji A R O, Lambert T N, Vigil J A, Li L, Nan K, Tour J M. Electroanalysis, 2014, 26: 164

    48. [48]

      [48] Kumar S, Selvaraj C, Scanlon L G, Munichandraiah N. Phys Chem Chem Phys, 2014, 16: 22830

    49. [49]

      [49] Lim E J, Choi S M, Seo M H, Kim Y, Lee S, Kim W B. Electrochem Commun, 2013, 28: 100

    50. [50]

      [50] Genies L, Faure R, Durand R. Electrochim Acta, 1998, 44: 1317

    51. [51]

      [51] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H. Adv Funct Mater, 2009, 19: 1987

    52. [52]

      [52] Jasinski R J. Nature, 1964, 201: 1212

    53. [53]

      [53] Jiang Y Y, Lu Y Z, Lü X Y, Han D X, Zhang Q X, Niu L, Chen W. ACS Catal, 2013, 3: 1263

    54. [54]

      [54] Zhao X N, Zhang P P, Chen Y T, Su Z Q, Wei G. Nanoscale, 2015, 7: 5080

    55. [55]

      [55] Tiwari J N, Kemp K C, Nath K, Tiwari R N, Nam H G, Kim K S. ACS Nano, 2013, 7: 9223

    56. [56]

      [56] Chen H S, Liang Y T, Chen T Y, Tseng Y C, Liu C W, Chung S R, Hsieh C T, Lee C E, Wang K W. Chem Commun, 2014, 50: 11165

    57. [57]

      [57] Tiido K, Alexeyeva N, Couillard M, Bock C, MacDougall B R, Tammeveski K. Electrochim Acta, 2013, 107: 509

    58. [58]

      [58] Tan Y M, Xu C F, Chen G X, Zheng N F, Xie Q J. Energy Environ Sci, 2012, 5: 6923

    59. [59]

      [59] Chou C C, Liu C H, Chen B H. Energy, 2014, 70: 231

    60. [60]

      [60] Tiwari J N, Nath K, Kumar S, Tiwari R N, Kemp C, Le N H, Youn D H, Lee J S, Kim K S. Nat Commun, 2013, 4: 3221

    61. [61]

      [61] Nam K W, Song J, Oh K H, Choo M J, Park H A, Park J K, Choi J W. J Solid State Electrochem, 2013, 17: 767

    62. [62]

      [62] Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. J Am Chem Soc, 2012, 134: 12326

    63. [63]

      [63] Carrera-Cerritos R, Baglio V, Aricò A S, Ledesma-García J, Sgroi M F, Pullini D, Pruna A J, Mataix D B, Fuentes-Ramírez R, Arriaga L G. Appl Catal B, 2014, 144: 554

    64. [64]

      [64] Kakaei K, Gharibi H. Energy, 2014, 65: 166

    65. [65]

      [65] Zhang P D, Zhang X Y, Zhang S Y, Lu X, Li Q, Su Z Q, Wei G. J Mater Chem B, 2013, 1: 6525

    66. [66]

      [66] Yu D B, Yao J F, Qiu L, Wu Y Z, Li L X, Feng Y, Liu Q, Li D, Wang H T. RSC Adv, 2013, 3: 11552

    67. [67]

      [67] Yin H, Zhang C Z, Liu F, Hou Y L. Adv Funct Mater, 2014, 24: 2930

    68. [68]

      [68] Gao X, Wang J F, Ma Z, Ye J S. Electrochim Acta, 2014, 130: 543

    69. [69]

      [69] He C Y, Zhang J J, Shen P K. J Mater Chem A, 2014, 2: 3231

    70. [70]

      [70] Lin L, Li M, Jang L Q, Li Y F, Liu D J, He X Q, Cui L L. J Power Sources, 2014, 268: 269

    71. [71]

      [71] Li M, Bo X J, Zhang Y F, Han C, Guo L P. J Power Sources, 2014, 264: 114

    72. [72]

      [72] Lim C S, Ambrosi, A, Sofer Z, Pumera M. Nanoscale, 2014, 6: 7391

    73. [73]

      [73] Taniguchi T, Tateishi H, Miyamoto S, Hatakeyama K, Ogata C, Funatsu A, Hayami S, Makinose Y, Matsushita N, Koinuma M, Matsumoto Y. Part Part Syst Charact, 2013, 30: 1063

    74. [74]

      [74] Zheng B, Wang J, Wang F B, Xia X H. J Mater Chem A, 2014, 2: 9079

    75. [75]

      [75] Jiang Y Y, Lu Y Z, Wang X D, Bao Y, Chen W, Niu L. Nanoscale, 2014, 6: 15066

  • 加载中
    1. [1]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    4. [4]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    5. [5]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    6. [6]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    9. [9]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    10. [10]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    11. [11]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    12. [12]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    13. [13]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    15. [15]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    16. [16]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    19. [19]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    20. [20]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

Metrics
  • PDF Downloads(0)
  • Abstract views(487)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return