Citation:
Yang-Gang Wang, Xiao-Feng Yang, Jun Li. Theoretical studies of CO oxidation with lattice oxygen on Co3O4 surfaces[J]. Chinese Journal of Catalysis,
;2016, 37(1): 193-198.
doi:
10.1016/S1872-2067(15)60969-X
-
Low-temperature CO oxidation has attracted extensive interest in heterogeneous catalysis because of the potential applications in fuel cells, air cleaning, and automotive emission reduction. In the present study, theoretical investigations have been performed using density functional theory to elucidate the crystal plane effect and structure sensitivity of Co3O4 nano-catalysts toward catalyzing CO oxidation. It is shown that the surface Co-O ion pairs are the active site for CO oxidation on the Co3O4 surface. Because of stronger CO adsorption and easier removal of lattice oxygen ions, the Co3O4(011) surface is shown to be more reactive for CO oxidation than the Co3O4(001) surface, which is consistent with previous experimental results. By comparing the reaction pathways at different sites on each surface, we have further elucidated the nature of the crystal plane effect on Co3O4 surfaces and attributed the reactivity to the surface reducibility. Our results suggest that CO oxidation catalyzed by Co3O4 nanocrystals has a strong crystal plane effect and structure sensitivity. Lowering the vacancy formation energy of the oxide surface is key for high CO oxidation reactivity.
-
-
-
[1]
[1] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Nature, 2005, 437, 121.
-
[2]
[2] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science, 2007, 316, 732.
-
[3]
[3] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Nature, 2009, 458, 746.
-
[4]
[4] R. A. Van Santen, Acc. Chem. Res., 2009, 42, 57.
-
[5]
[5] X. W. Liu, K. B. Zhou, L. Wang, B. Y. Wang, Y. D. Li, J. Am. Chem. Soc., 2009, 131, 3140.
-
[6]
[6] Y. G. Wang, X. F. Yang, L. H. Hu, Y. D. Li, J. Li, Chin. J. Catal., 2014, 35, 462.
-
[7]
[7] L. H. Hu, Q. Peng, Y. D. Li, J. Am. Chem. Soc., 2008, 130, 16136.
-
[8]
[8] L. H. Hu, K. Q. Sun, Q. Peng, B. Q. Xu, Y. D. Li, Nano Res., 2010, 3, 363.
-
[9]
[9] N. Venugopal, A. K. Pullur, W. S. Kim, H. P. Ha, Catal. Lett., 2014, 144, 2151.
-
[10]
[10] R. Edla, N. Patel, Z. E. Koura, R. Fernandes, N. Bazzanella, A. Miotello, Appl. Surf. Sci., 2014, 302, 105.
-
[11]
[11] Y. H. Teng, Y. Kusano, M. Azuma, M. Haruta, Y. Shimakawa, Catal. Sci. Technol., 2011, 1, 920.
-
[12]
[12] Y. G. Lv, Y. Li, W. J. Shen, Catal. Commun., 2013, 42, 116.
-
[13]
[13] G. L. Xiang, Y. G. Wang, D. Wu, T. Y. Li, J. He, J. Li, X. Wang, Chem. Eur. J., 2012, 18, 4759.
-
[14]
[14] G. L. Xiang, Y. G. Wang, J. Li, J. Zhuang, X. Wang, Sci. Rep., 2013, 3, 1411.
-
[15]
[15] L. X. Du, Z. J. Wu, Q. Wu, C. Jiang, L. Y. Piao, Chin. J. Catal., 2013, 34, 808.
-
[16]
[16] F. Zasada, P. Stelmachowski, G. Maniak, J. F. Paul, A. Kotarba, Z. Sojka, Catal. Lett., 2009, 127, 126.
-
[17]
[17] W. Piskorz, F. Zasada, P. Stelmachowski, A. Kotarba, Z. Sojka, Catal. Today, 2008, 137, 418.
-
[18]
[18] P. Broqvist, I. Panas, H. Perrson, J. Catal., 2002, 210, 198.
-
[19]
[19] X. L. Xu, E. Yang, J. Q. Li, Y. Li, W. K. Chen, ChemCatChem, 2009, 1, 384.
-
[20]
[20] D. E. Jiang, S. Dai, Phys. Chem. Chem. Phys., 2011, 13, 978.
-
[21]
[21] X. Y. Pang, C. Liu, D. C. Li, C. Q. Lv, G. C. Wang, ChemPhysChem, 2013, 14, 204.
-
[22]
[22] B Delley, J. Chem. Phys., 1990, 92, 508.
-
[23]
[23] B. Delley, J. Phys. Chem., 1996, 100, 6107.
-
[24]
[24] B. Delley, J. Chem. Phys., 2000, 113, 7756.
-
[25]
[25] J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865.
-
[26]
[26] S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell, J. Mol. Catal. A, 2008, 281, 49.
-
[27]
[27] N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, Comput. Mater. Sci., 2003, 28, 250.
-
[28]
[28] X. L. Xu, Z. H. Chen, Y. Li, W. K. Chen, J. Q. Li, Surf. Sci., 2009, 603, 653.
-
[29]
[29] S. Selcuk, A. Selloni, J. Phys. Chem. C, 2015, 119, 9973.
-
[30]
[30] J. Jansson, J. Catal., 2000, 194, 55.
-
[31]
[31] J. Jansson, M. Skoglundh, E. Fridell, P. Thormählen, Top Catal., 2001, 16/17, 385.
-
[32]
[32] Y. G. Wang, D. H. Mei, J. Li, R. Rousseau, J. Phys. Chem. C, 2013, 117, 23082.
-
[33]
[33] Y. G. Wang, D. H. Mei, V. A. Glezakou, J. Li, R. Rousseau, Nat. Commun., 2015, 6, 6511.
-
[34]
[34] H. F. Wang, R. Kavanagh, Y. L. Guo, Y. Guo, G. Z. Lu, P. Hu, J. Catal., 2012, 296, 110.
-
[35]
[35] J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem., 2009, 1, 37.
-
[36]
[36] X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, T. Zhang, Acc. Chem. Res., 2013, 46, 1740.
-
[37]
[37] B. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, T. Zhang, Nat. Chem., 2011, 3, 634.
-
[38]
[38] Y. H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc., 2013, 135, 15425.
-
[1]
-
-
-
[1]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[2]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[3]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[4]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[5]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[6]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[8]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[9]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[10]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[11]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[12]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[13]
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
-
[14]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[15]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[16]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[17]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[18]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[19]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[20]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(933)
- HTML views(110)