Citation: Yang-Gang Wang, Xiao-Feng Yang, Jun Li. Theoretical studies of CO oxidation with lattice oxygen on Co3O4 surfaces[J]. Chinese Journal of Catalysis, ;2016, 37(1): 193-198. doi: 10.1016/S1872-2067(15)60969-X shu

Theoretical studies of CO oxidation with lattice oxygen on Co3O4 surfaces

  • Corresponding author: Jun Li, 
  • Received Date: 7 August 2015
    Available Online: 6 September 2015

    Fund Project: 国家重点基础研究发展计划(2011CB932401) (2011CB932401) 国家自然科学基金(21221062). (21221062)

  • Low-temperature CO oxidation has attracted extensive interest in heterogeneous catalysis because of the potential applications in fuel cells, air cleaning, and automotive emission reduction. In the present study, theoretical investigations have been performed using density functional theory to elucidate the crystal plane effect and structure sensitivity of Co3O4 nano-catalysts toward catalyzing CO oxidation. It is shown that the surface Co-O ion pairs are the active site for CO oxidation on the Co3O4 surface. Because of stronger CO adsorption and easier removal of lattice oxygen ions, the Co3O4(011) surface is shown to be more reactive for CO oxidation than the Co3O4(001) surface, which is consistent with previous experimental results. By comparing the reaction pathways at different sites on each surface, we have further elucidated the nature of the crystal plane effect on Co3O4 surfaces and attributed the reactivity to the surface reducibility. Our results suggest that CO oxidation catalyzed by Co3O4 nanocrystals has a strong crystal plane effect and structure sensitivity. Lowering the vacancy formation energy of the oxide surface is key for high CO oxidation reactivity.
  • 加载中
    1. [1]

      [1] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Nature, 2005, 437, 121.

    2. [2]

      [2] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science, 2007, 316, 732.

    3. [3]

      [3] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Nature, 2009, 458, 746.

    4. [4]

      [4] R. A. Van Santen, Acc. Chem. Res., 2009, 42, 57.

    5. [5]

      [5] X. W. Liu, K. B. Zhou, L. Wang, B. Y. Wang, Y. D. Li, J. Am. Chem. Soc., 2009, 131, 3140.

    6. [6]

      [6] Y. G. Wang, X. F. Yang, L. H. Hu, Y. D. Li, J. Li, Chin. J. Catal., 2014, 35, 462.

    7. [7]

      [7] L. H. Hu, Q. Peng, Y. D. Li, J. Am. Chem. Soc., 2008, 130, 16136.

    8. [8]

      [8] L. H. Hu, K. Q. Sun, Q. Peng, B. Q. Xu, Y. D. Li, Nano Res., 2010, 3, 363.

    9. [9]

      [9] N. Venugopal, A. K. Pullur, W. S. Kim, H. P. Ha, Catal. Lett., 2014, 144, 2151.

    10. [10]

      [10] R. Edla, N. Patel, Z. E. Koura, R. Fernandes, N. Bazzanella, A. Miotello, Appl. Surf. Sci., 2014, 302, 105.

    11. [11]

      [11] Y. H. Teng, Y. Kusano, M. Azuma, M. Haruta, Y. Shimakawa, Catal. Sci. Technol., 2011, 1, 920.

    12. [12]

      [12] Y. G. Lv, Y. Li, W. J. Shen, Catal. Commun., 2013, 42, 116.

    13. [13]

      [13] G. L. Xiang, Y. G. Wang, D. Wu, T. Y. Li, J. He, J. Li, X. Wang, Chem. Eur. J., 2012, 18, 4759.

    14. [14]

      [14] G. L. Xiang, Y. G. Wang, J. Li, J. Zhuang, X. Wang, Sci. Rep., 2013, 3, 1411.

    15. [15]

      [15] L. X. Du, Z. J. Wu, Q. Wu, C. Jiang, L. Y. Piao, Chin. J. Catal., 2013, 34, 808.

    16. [16]

      [16] F. Zasada, P. Stelmachowski, G. Maniak, J. F. Paul, A. Kotarba, Z. Sojka, Catal. Lett., 2009, 127, 126.

    17. [17]

      [17] W. Piskorz, F. Zasada, P. Stelmachowski, A. Kotarba, Z. Sojka, Catal. Today, 2008, 137, 418.

    18. [18]

      [18] P. Broqvist, I. Panas, H. Perrson, J. Catal., 2002, 210, 198.

    19. [19]

      [19] X. L. Xu, E. Yang, J. Q. Li, Y. Li, W. K. Chen, ChemCatChem, 2009, 1, 384.

    20. [20]

      [20] D. E. Jiang, S. Dai, Phys. Chem. Chem. Phys., 2011, 13, 978.

    21. [21]

      [21] X. Y. Pang, C. Liu, D. C. Li, C. Q. Lv, G. C. Wang, ChemPhysChem, 2013, 14, 204.

    22. [22]

      [22] B Delley, J. Chem. Phys., 1990, 92, 508.

    23. [23]

      [23] B. Delley, J. Phys. Chem., 1996, 100, 6107.

    24. [24]

      [24] B. Delley, J. Chem. Phys., 2000, 113, 7756.

    25. [25]

      [25] J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865.

    26. [26]

      [26] S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell, J. Mol. Catal. A, 2008, 281, 49.

    27. [27]

      [27] N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, Comput. Mater. Sci., 2003, 28, 250.

    28. [28]

      [28] X. L. Xu, Z. H. Chen, Y. Li, W. K. Chen, J. Q. Li, Surf. Sci., 2009, 603, 653.

    29. [29]

      [29] S. Selcuk, A. Selloni, J. Phys. Chem. C, 2015, 119, 9973.

    30. [30]

      [30] J. Jansson, J. Catal., 2000, 194, 55.

    31. [31]

      [31] J. Jansson, M. Skoglundh, E. Fridell, P. Thormählen, Top Catal., 2001, 16/17, 385.

    32. [32]

      [32] Y. G. Wang, D. H. Mei, J. Li, R. Rousseau, J. Phys. Chem. C, 2013, 117, 23082.

    33. [33]

      [33] Y. G. Wang, D. H. Mei, V. A. Glezakou, J. Li, R. Rousseau, Nat. Commun., 2015, 6, 6511.

    34. [34]

      [34] H. F. Wang, R. Kavanagh, Y. L. Guo, Y. Guo, G. Z. Lu, P. Hu, J. Catal., 2012, 296, 110.

    35. [35]

      [35] J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem., 2009, 1, 37.

    36. [36]

      [36] X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, T. Zhang, Acc. Chem. Res., 2013, 46, 1740.

    37. [37]

      [37] B. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, T. Zhang, Nat. Chem., 2011, 3, 634.

    38. [38]

      [38] Y. H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc., 2013, 135, 15425.

  • 加载中
    1. [1]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    2. [2]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    5. [5]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    6. [6]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    12. [12]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    13. [13]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    14. [14]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    20. [20]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

Metrics
  • PDF Downloads(1)
  • Abstract views(933)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return