Citation: Weimin Yang, Zhendong Wang, Hongmin Sun, Bin Zhang. Advances in development and industrial applications of ethylbenzene processes[J]. Chinese Journal of Catalysis, ;2016, 37(1): 16-26. doi: 10.1016/S1872-2067(15)60965-2 shu

Advances in development and industrial applications of ethylbenzene processes

  • Corresponding author: Weimin Yang, 
  • Received Date: 2 June 2015
    Available Online: 25 August 2015

  • The benzene alkylation process for the production of ethylbenzene has undergone significant improvements during recent decades. Various environmentally benign zeolite-catalyzed ethylbenzene processes, including ZSM-5-zeolite-based vapor-phase ethylbenzene processes and Y-, β-, and MCM-22-zeolite-based liquid-phase processes, have been developed and commercialized. Pure ethylene, ethanol, and dilute ethylene have been used as ethylation agents. Here, the development and industrial application of alkylation catalysts and benzene ethylation techniques are summarized, and some other promising innovations are discussed. Recent advances in benzene alkylation over hierarchical zeolites with improved access to active sites and molecular transport are also covered. Zeolites with short diffusion lengths are promising candidates as better alkylation catalysts. The key point is how to obtain such materials easily and economically. The structure-activity relationships of commercial zeolites in these processes are discussed. Liquid-phase processes catalyzed by β and MCM-22 are more profitable than vapor-phase processes catalyzed by ZSM-5.
  • 加载中
    1. [1]

      [1] N. Mimura, M. Saito, Catal. Today, 2000, 55, 173.

    2. [2]

      [2] C. Perego, P. Ingallina, Catal. Today, 2002, 73, 3.

    3. [3]

      [3] K. Tanabe, W. F. Hölderich, Appl. Catal. A, 1999, 181, 399.

    4. [4]

      [4] A. A. O'Kelly, J. III Kellett, J. Plucker, Ind. Eng. Chem., 1947, 39, 154.

    5. [5]

      [5] W. M. Yang, H. M. Sun, S. J. Yang, H. F. Zhu, Shanghai Chem. Ind., 2002, (9-10), 16.

    6. [6]

      [6] J. R. Argauer, R. G. Landolt, US Patent 3 702 886, 1972.

    7. [7]

      [7] G. T. Kokotailo, S. L. Lawton, D. H. Olson, W. M. Meier, Nature, 1978, 272, 437.

    8. [8]

      [8] Z. K. Xie, Porous Catalytic Materials with New Structure and Improved Performance, China Petrochem. Press, Beijing, 2010, 4.

    9. [9]

      [9] N. Y. Chen, W. E. Garwood, Catal. Rev.-Sci. Eng., 1986, 28, 185.

    10. [10]

      [10] W. M. Yang, H. M. Sun, Q. L. Chen, Adv. Fine Petrochem., 2002, 3(4), 12.

    11. [11]

      [11] H. M. Sun, W. M. Yang, Q. L. Chen, Z. L. Xu, M. Jin, X. F. Shi, Ind. Catal., 2001, 9(5), 23.

    12. [12]

      [12] H. M. Sun, W. M. Yang, B. X. Liao, J. C. Zheng, Chem. React. Eng. Technol., 2006, 22, 206.

    13. [13]

      [13] M. Ni, D. Y. C. Leung, M. K. H. Leung, Int. J. Hydrogen Energy, 2007, 32, 3238.

    14. [14]

      [14] K. H. Chandawar, S. B. Kulkarni, P. Ratnasamy, Appl. Catal., 1982, 4, 287.

    15. [15]

      [15] X. W. Nie, X. Liu, C. S. Song, X. W. Guo, Chin. J. Catal., 2009, 30, 453.

    16. [16]

      [16] W. M. Yang, H. M. Sun, W. J. Liu, B. Zhang, Z. H. Shen, M. Y. Huan, H. Y. Zhang, US Patent 8 519 208, 2013.

    17. [17]

      [17] Y. J. Zhao, X. Zhang, C. L. Zhou, X. J. Jin, Contemp. Chem. Ind., 2011, 40, 1149.

    18. [18]

      [18] T. F. Degnan Jr, C. M. Smith, C. R. Venkat, Appl. Catal. A, 2001, 221, 283.

    19. [19]

      [19] F. C. Chen, X. X. Zhu, S. J. Xie, P. Zeng, Z. J. Guo, J. An, Q. X. Wang, S. L. Liu, L. Y. Xu, Chin. J. Catal., 2009, 30, 817.

    20. [20]

      [20] Y. Q. Wang, Petrochem. Technol., 2001, 30, 479.

    21. [21]

      [21] Q. X. Wang, S. R. Zhang, G. Y. Cai, F. Li, L. Y. Xu, Z. X. Huang, Y. Y. Li. US Patent 5 869 021, 1999.

    22. [22]

      [22] J. W. Li, J. Wang, X. L. Liu, G. Chen, C. L. Guo, J. Cong, L. Wang, L. Chen, Y. B. Wang, Chem. Ind. Eng. Progr., 2010, 29, 1790.

    23. [23]

      [23] S. Q. Gao, Nat. Gas Chem. Ind., 2010, 35(4), 55.

    24. [24]

      [24] Y. Zhang, Q. J. Tian, X. B .Ma, Petrol. Refinery Eng., 2012, 42(10), 59.

    25. [25]

      [25] J. L. Gou, Ind. Catal., 2014, 22, 397.

    26. [26]

      [26] C. G. Wight, US Patent 4 169 111, 1979.

    27. [27]

      [27] M. Rasouli, N. Yaghobi, S. Chitsazan, M. H. Sayyar, Microporous Mesoporous Mater., 2012, 152, 141.

    28. [28]

      [28] J. B. Higgins, R. B. LaPierre, J. L. Schlenker, A. C. Rohrman, J. D. Wood, G. T. Kerr, W. J. Rohrbaugh, Zeolites, 1988, 8, 446.

    29. [29]

      [29] R. L. Wadlinger, G. T. Kerr, E. J. Rosinski, US Patent 3 308 069, 1967.

    30. [30]

      [30] J. Aguado, D. P. Serrano, J. M. Rodríguez, Microporous Mesoporous Mater., 2008, 115, 504.

    31. [31]

      [31] G. Bellussi, G. Pazzuconi, C. Perego, G. Girotti, G. Terzoni, J. Catal., 1995, 157, 227.

    32. [32]

      [32] L. Forni, G. Gremona, F. Missineo, G. Bellussi, C. Perego, G. Pazzuconi, Appl. Catal. A, 1995, 121, 261.

    33. [33]

      [33] J. C. Cheng, A. S. Fung, D. J. Klocke, S. L. Lawton, D. N. Lissy, W. J. Roth, C. M. Smith, D. E. Walsh, US Patent 5 557 024, 1996.

    34. [34]

      [34] J. N. Armor, Appl. Catal. A, 2001, 222, 407.

    35. [35]

      [35] G. J. Gajda, R. T. Gajek, US Patent 5 522 984, 1996.

    36. [36]

      [36] J. Wang, F. M. Zhang, M. L. Li, C. Zhang, Petrol. Process Petrochem., 2002, 33(9), 13.

    37. [37]

      [37] Z. Y. Huang, S. X. Tian, Y. L. Xu, B. Zhu, W. D. Wang, F. M. Zhang, X. Wang, US Patent 5 600 050, 1997.

    38. [38]

      [38] H. L. Dai, Aromatic Technology, China Petrochem Press, Beijing, 2014, 524.

    39. [39]

      [39] Y. Wang, Y. M. Liu, L. L. Wang, H. H. Wu, X. H. Li, M. Y. He, P. Wu, J. Phys. Chem. C, 2009, 113, 18753.

    40. [40]

      [40] L. M. Rohde, G. J. Lewis, M. A. Miller, J. G. Moscoso, J. L. Gisselquist, R. L. Patton, S. T. Wilson, D. Y. Jan, US Patent 6 756 030, 2004.

    41. [41]

      [41] W. J. Roth, T. Yorke, D. L. Dorset, M. Kalyanaraman, M. C. Kerby, S. C. Weston, US Patent 8 110 176, 2012.

    42. [42]

      [42] W. J. Roth, D. L. Dorset, G. J. Kennedy, T. Yorke, T. E. Helton, US Patent 8 704 025, 2014.

    43. [43]

      [43] W. J. Roth, D. L. Dorset, G. J. Kennedy, T. Yorke, T. E. Helton, P. Ghosh, Y. V. Joshi, US Patent 8 704 023, 2014.

    44. [44]

      [44] M. E. Leonowicz, J. A. Lawton, S. L. Lawton, M. K. Rubin, Science, 1994, 264, 1910.

    45. [45]

      [45] D. Y. Jan, J. A. Johnson, R. J. Schmidt, G. B. Woodle, US Patent 7 268 267, 2007.

    46. [46]

      [46] D. Y. Jan, J. A. Johnson, R. J. Schmidt, M. P. Koljack, US Patent 8 518 847, 2013.

    47. [47]

      [47] D. B. Lukyanov, T. Vazhnova, J. Catal., 2008, 257, 382.

    48. [48]

      [48] S. Kato, K. Nakagawa, N. O. Ikenaga, T. Suzuki, Catal. Lett., 2001, 73, 175.

    49. [49]

      [49] T. Odedairo, S. Al-Khattaf, Appl. Catal. A, 2010, 385, 31.

    50. [50]

      [50] M. Raimondo, G. Perez, A. De Stefanis, A. A. G. Tomlinson, O. Ursini, Appl. Catal. A, 1997, 164, 119.

    51. [51]

      [51] M. Bevilacqua, D. Meloni, F. Sini, R. Monaci, T. Montanari, G. Busca, J. Phys. Chem. C, 2008, 112, 9023.

    52. [52]

      [52] J. C. Cheng, T. F. Degnan, J. S. Beck, Y. Y. Huang, M. Kalyanaraman, J. A. Kowalski, C. A. Loehr, D. N. Mazzone, Stud. Surf. Sci. Catal., 1999, 121, 53.

    53. [53]

      [53] Z. D. Wang, Y. X. Zhang, B. Zhang, H. M. Sun, W. M. Yang, Acta Petrol. Sin. (Petrol. Process Sect.), 2014, 30(1), 110.

    54. [54]

      [54] J. C. Kim, K. Cho, R. Ryoo, Appl. Catal. A, 2014, 470, 420.

    55. [55]

      [55] N. N. Gao, S. J. Xie, S. L. Liu, W. J. Xin, Y. Gao, X. J. Li, H. J. Wei, H. Liu, L. Y. Xu, Microporous Mesoporous Mater., 2015, 212, 1.

    56. [56]

      [56] J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C. H. Christensen, J. C. Groen, Chem. Soc. Rev., 2008, 37, 2530.

    57. [57]

      [57] K. F. Liu, S. J. Xie, G. L. Xu, Y. N. Li, S. L. Liu, L. Y. Xu, Appl. Catal. A, 2010, 383, 102.

    58. [58]

      [58] B. Zhang, Z. D. Wang, P. Ji, Y. M. Liu, H. M. Sun, W. M. Yang, P. Wu, Microporous Mesoporous Mater., 2013, 179, 63.

    59. [59]

      [59] M. Horňáček, P. Hudec, K. Velebná, P. Lovás, Catal. Commun., 2015, 64, 1.

    60. [60]

      [60] Y. Y. Sun, R. Prins, Appl. Catal. A, 2008, 336, 11.

    61. [61]

      [61] C. H. Christensen, K. Johannsen, I. Schmidt, C. H. Christensen, J. Am. Chem. Soc., 2003, 125, 13370.

    62. [62]

      [62] M. S. Holm, E. Taarning, K. Egeblad, C. H. Christensen, Catal. Today, 2011, 168, 3.

    63. [63]

      [63] R. C. Runnebaum, X. Ouyang, J. A. Edsinga, T. Rea, I. Arslan, S. J. Hwang, S. I. Zones, A. Katz, ACS Catal., 2014, 4, 2364.

    64. [64]

      [64] W. Kim, J. C. Kim, J. Kim, Y. Seo, R. Ryoo, ACS Catal., 2013, 3, 192.

    65. [65]

      [65] A. Corma, V. Fornés, J. Martínez-Triguero, S. B. C. Pergher, J. Catal., 1999, 186, 57.

    66. [66]

      [66] J. Aguilar, S. B. C. Pergher, C. Detoni, A. Corma, F. V. Melo, E. Sastre, Catal. Today, 2008, 133-135, 667.

    67. [67]

      [67] A. Corma, V. Martínez-Soria, E. Schnoeveld, J. Catal., 2000, 192, 163.

    68. [68]

      [68] H. W. Du, D. H. Olson, J. Phys. Chem. B, 2002, 106, 395.

    69. [69]

      [69] A. Corma, V. Fornés, J. M. Guil, S. Pergher, Th. L. M. Maesen, J. G. Buglass, Mircroporous Mesoporous Mater., 2000, 38, 301.

    70. [70]

      [70] C. T. Kresge, W. J. Roth, US Patent 5 278 115, 1994.

    71. [71]

      [71] X. B. Ma, F. C. Ruan, Ind. Catal., 2014, 22, 632.

    72. [72]

      [72] X. J. Meng, F. S. Xaio, Chem. Rev., 2014, 114, 1521.

    73. [73]

      [73] B. Xie, H. Y. Zhang, C. G. Yang, S. Y. Liu, L. M. Ren, L. Zhang, X. J. Meng, B. Yilmaz, U. Müller, F. S. Xiao, Chem. Commun., 2011, 47, 3945.

    74. [74]

      [74] B. Xie, J. W. Song, L. M. Ren, Y. Y. Ji, J. X. Li, F. S. Xiao, Chem. Mater., 2008, 20, 4533.

    75. [75]

      [75] L. M. Ren, Q. M. Wu, C. G. Yang, L. F. Zhu, C. J. Li, P. L. Zhang, H. Y. Zhang, X. J. Meng, F. S. Xiao, J. Am. Chem. Soc., 2012, 134, 15173.

    76. [76]

      [76] Y. Y. Jin, Q. Sun, G. D. Qi, C. G. Yang, J. Xu, F. Chen, X. J. Meng, F. Deng, F. S. Xiao, Angew. Chem. Int. Ed., 2013, 52, 9172.

    77. [77]

      [77] S. Q. Wei, F. F. Qu, CN Patent 102 092 740, 2011.

    78. [78]

      [78] Y. C. Shi, E. H. Xing, W. H. Xie, F. M. Zhang, X. H. Mu, X. T. Shu, RSC Adv., 2015, 5, 13420.

    79. [79]

      [79] E. H. Xing, Y. C. Shi, A. G. Zheng, J. Zhang, X. Z. Gao, D. Y. Liu, M. D. Xin, W. H. Xie, F. M. Zhang, X. H. Mu, X. T. Shu, Ind. Eng. Chem. Res., 2015, 54, 3123.

    80. [80]

      [80] A. Galadima, O. Muraza, Microporous Mesoporous Mater., 2015, 213, 169.

    81. [81]

      [81] M. C. Clark, B. S. Umansky, E. A. Nye, M. J. Reichensperger, W. C. Lewis, US Patent 8 395 006, 2013.

    82. [82]

      [82] A. A. Chin, N. A. Collins, M. N. Harandi, R. T. Thomson, R. A. Ware, US Patent 5 491 270, 1996.

    83. [83]

      [83] O. Graf P., L. Lefferts, Chem. Eng. Sci., 2009, 64, 2773.

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    8. [8]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    9. [9]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    10. [10]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    11. [11]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    12. [12]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    13. [13]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    14. [14]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    15. [15]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    18. [18]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    19. [19]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    20. [20]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

Metrics
  • PDF Downloads(0)
  • Abstract views(1043)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return