Citation: Bahaa M. Abu-Zied, Abdullah M. Asiri. The role of alkali promoters in enhancing the direct N2O decomposition reactivity over NiO catalysts[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1837-1845. doi: 10.1016/S1872-2067(15)60963-9 shu

The role of alkali promoters in enhancing the direct N2O decomposition reactivity over NiO catalysts

  • Corresponding author: Bahaa M. Abu-Zied, 
  • Received Date: 5 May 2015
    Available Online: 21 August 2015

  • Direct N2O decomposition has been investigated over bare NiO and a series of its alkali-promoted catalysts. These catalysts were characterized by X-ray diffractometry, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy. XPS analysis revealed that surface nickel is present in three forms: metal particles, NiO and Ni(OH)2. It is suggested that nickel(0) valent atoms are essential for the interaction with N2O molecules at the catalyst surfaces. Bare NiO exhibited a very low N2O decomposition reactivity. However, the alkali-containing catalysts exhibited a marked activity enhancement.
  • 加载中
    1. [1]

      [1] Pérez-Ramírez J. Appl Catal B, 2007, 70: 31

    2. [2]

      [2] Yuranov I, Bulushev D A, Renken A, Kiwi-Minsker L. Appl Catal A, 2007, 319: 128

    3. [3]

      [3] Wood B R, Reimer J A, Bell A T, Janicke M T, Ott K C. J Catal, 2004, 225: 300

    4. [4]

      [4] Kapteijn F, Rodriguez-Mirasol J, Moulijn J A. Appl Catal B, 1996, 9: 25

    5. [5]

      [5] Abu-Zied B M, Schwieger W, Unger A. Appl Catal B, 2008, 84: 277

    6. [6]

      [6] Abu-Zied B M, Soliman S A. Catal Lett, 2009, 132: 299

    7. [7]

      [7] Abu-Zied B M. Microporous Mesoporous Mater, 2011, 139: 59

    8. [8]

      [8] Abu-Zied B M. Chin J Catal (催化学报), 2011, 32: 264

    9. [9]

      [9] Abu-Zied B M, Soliman S A, Abdellah S E. Chin J Catal (催化学报), 2014, 35: 1105

    10. [10]

      [10] Abu-Zied B M, Soliman S A, Abdellah S E. J Ind Eng Chem, 2015, 21: 814

    11. [11]

      [11] Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M. Appl Catal B, 2008, 78: 242

    12. [12]

      [12] Stelmachowski P, Maniak G, Kotarba A, Sojka Z. Catal Commun, 2009, 10: 1062

    13. [13]

      [13] Haber J, Machej T, Janas J, Nattich M. Catal Today, 2004, 90: 15

    14. [14]

      [14] Haber J, Nattich M, Machej T. Appl Catal B, 2008, 77: 278

    15. [15]

      [15] Pasha N, Lingaiah N, Reddy P S S, Prasad P S S. Catal Lett, 2007, 118: 64

    16. [16]

      [16] Cheng H K, Huang Y Q, Wang A Q, Li L, Wang X D, Zhang T. Appl Catal B, 2009, 89: 391

    17. [17]

      [17] Pasha N, Lingaiah N, Babu N S, Reddy P S S, Prasad P S S. Catal Commun, 2008, 10: 132

    18. [18]

      [18] Pasha N, Lingaiah N, Reddy P S S, Prasad P S S. Catal Lett, 2009, 127: 101

    19. [19]

      [19] Yoshino H, Ohnishi C H, Hosokawa S, Wada K, Inoue M. J Mater Sci, 2011, 46:797

    20. [20]

      [20] Maniak G, Stelmachowski P, Zasada F, Piskorz W, Kotarba A, Sojka Z. Catal Today, 2011, 176: 369

    21. [21]

      [21] Maniak G, Stelmachowski P, Kotarba A, Sojka Z, Rico-Pérez V, Bueno-López A. Appl Catal B, 2013, 136-137: 302

    22. [22]

      [22] Zhang F F, Wang X P, Zhang X X, Turxun M, Yu H B, Zhao J J. Chem Eng J, 2014, 256: 365

    23. [23]

      [23] Wu H P, Qian Z Y, Xu X L, Xu X F. J Fuel Chem Technol, 2011, 39: 115

    24. [24]

      [24] Wu H P, Li W J, Guo L, Pan Y F, Xu X F. J Fuel Chem Technol, 2011, 39: 550

    25. [25]

      [25] Pachatouridou E, Papista E, Iliopoulou E F, Delimitis A, Goula G, Yentekakis I V, Marnellos G E, Konsolakis M. J Environ Chem Eng, 2015, 3: 815

    26. [26]

      [26] Konsolakis M, Aligizou F, Goula G, Yentekakis I V. Chem Eng J, 2013, 230: 286

    27. [27]

      [27] Konsolakis M, Drosou C, Yentekakis I V. Appl Catal B, 2012, 123-124: 405

    28. [28]

      [28] Sugawara K, Nobukawa T, Yoshida M, Sato Y, Okumura K, Tomishige K, Kunimori K. Appl Catal B, 2007, 69: 154

    29. [29]

      [29] Zhang X Y, Shen Q, He C, Ma C Y, Cheng J, Hao Z P. Catal Commun, 2012, 18: 151

    30. [30]

      [30] Colombo M, Nova I, Tronconi E, SchmeiBer V, Bandl-Konrad B, Zimmermann L. Appl Catal B, 2012, 111-112: 106

    31. [31]

      [31] Debbagh M N, Bueno-López A, de Lecea C S M, Pérez-Ramírez J. Appl Catal A, 2007, 327: 66

    32. [32]

      [32] Debbagh M N, de Lecea C S M, Pérez-Ramírez J. Appl Catal B, 2007, 70: 335

    33. [33]

      [33] Kögel M, Mönnig R, Schwieger W, Tissler A, Turek T. J Catal, 1999, 182: 470

    34. [34]

      [34] Nobukawa T, Sugawara K, Okumura K, Tomishige K, Kunimori K. Appl Catal B, 2007, 70: 342

    35. [35]

      [35] Pophal C, Yogo T, Yamada K, Segawa K. Appl Catal B, 1998, 16: 177

    36. [36]

      [36] Yamada K, Kondo S, Segawa K. Microporous Mesoporous Mater, 2000, 35-36: 227

    37. [37]

      [37] Pekridis G, Kaklidis N, Konsolakis M, Iliopoulou E F, Yentekakis I V, Marnellos G E. Top Catal, 2011, 54: 1135

    38. [38]

      [38] Barakat N A M, Abdelkareem M A, El-Newehy M, Kim H Y. Nanoscale Res Lett, 2013, 8: 402/1

    39. [39]

      [39] Farzaneh F, Mehraban Z, Norouzi F. Environ Chem Lett, 2010, 8: 69

    40. [40]

      [40] Zhou D S, Yan A F, Wu Y, Wu T H. Indian J Chem A, 2013, 52: 51

    41. [41]

      [41] Wang Y P, Zhu J W, Yang X J, Lu L D, Wang X. Thermochim Acta, 2005, 437: 106

    42. [42]

      [42] Hussein G A M, Nohman A K H, Attyia K M A. J Therm Anal, 1994, 42: 1155

    43. [43]

      [43] Mohamed M A, Halawy S A, Ebrahim M M. J Anal Appl Pyr, 1993, 27: 109

    44. [44]

      [44] Konsolakis M, Carabineiro S A C, Papista E, Marnellos G E, Tavares P B, Moreira J A, Romaguera-Barcelay Y, Figueiredo J L. Catal Sci Technol, 2015, 5: 3714

    45. [45]

      [45] Abu-Zied B M. Appl Catal A, 2008, 334: 234

    46. [46]

      [46] Zhai X L, Cheng Y H, Zhang Z T, Jin Y, Cheng Y. Int J Hydrogen Energy, 2011, 36: 7105

    47. [47]

      [47] Guil-López R, La Parola V, Peña M A, Fierro J L G. Int J Hydrogen Energy, 2012, 37: 7042

    48. [48]

      [48] Lin W W, Cheng H Y, Ming J, Yu Y C, Zhao F Y. J Catal, 2012, 291: 149

    49. [49]

      [49] Kaichev V V, Gladky A Y, Prosvirin I P, Saraev A A, Hävecker M, Knop-Gericke A, Schlögl R, Bukhtiyarov V I. Surf Sci, 2013, 609: 113

    50. [50]

      [50] Greiner M T, Helander M G, Wang Z B, Tang W M, Lu Z H. J Phys Chem C, 2010, 114: 19777

    51. [51]

      [51] Seo H O, Nam J W, Kim K D, Sim J K, Kim Y D, Lim D C. J Mol Catal A, 2012, 361-362: 45

    52. [52]

      [52] Abu-Zied B M, Asiri A M. Thermochim Acta, 2014, 581: 110

    53. [53]

      [53] Roy B, Artyushkova K, Pham H N, Li L, Datye A K, Leclerc C A. Int J Hydrogen Energy, 2012, 37: 18815

    54. [54]

      [54] Rodríguez J L, Valenzuela M A, Poznyak T, Lartundo L, Chairez I. J Hazard Mater, 2013, 262: 472

    55. [55]

      [55] Rocca M, Savio L, Vattuone L, Burghaus U, Palomba V, Novelli N, Buatier de Mongeot F, Valbusa U, Gunnella R, Comelli G, Baraldi A, Lizzit S, Paolucci G. Phys Rev B, 2000, 61: 213

    56. [56]

      [56] Liu Y M, Wang T, Sun X, Fang Q Q, Lü Q R, Song X P, Sun Z Q. Appl Surf Sci, 2011, 257: 6540

    57. [57]

      [57] Payne B P, Biesinger M C, McIntyre N S. J Electron Spectrosc Relat Phenom, 2012, 185: 159

    58. [58]

      [58] Biesinger M C, Payne B P, Lau L W M, Gerson A, Smart R St C. Surf Interf Anal, 2009, 41: 324

    59. [59]

      [59] Piumetti M, Bensaid S, Russo N, Fino D. Appl Catal B, 2015, 165: 742

    60. [60]

      [60] Yamashita T, Vannic A. J Catal, 1996, 161: 254

    61. [61]

      [61] Pietrzyk P, Zasada F, Piskorz W, Kotarba A, Sojka Z. Catal Today, 2007, 119: 219

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    8. [8]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    9. [9]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    10. [10]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    11. [11]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    20. [20]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(376)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return