Citation: Peter Adeniyi Alaba, Yahaya Muhammad Sani, Wan Mohd Ashri Wan Daud. Synthesis and characterization of hierarchical nanoporous HY zeolites from acid-activated kaolin[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1846-1851. doi: 10.1016/S1872-2067(15)60962-7 shu

Synthesis and characterization of hierarchical nanoporous HY zeolites from acid-activated kaolin

  • Corresponding author: Wan Mohd Ashri Wan Daud, 
  • Received Date: 1 May 2015
    Available Online: 15 August 2015

  • Hierarchical nanoporous HY zeolites were synthesized from acid-activated kaolin. The hierarchical factor (HF) was maximized by varying the aging and crystallization time. This was achieved by maximizing the external surface area without greatly reducing the micropore volume. The resulting products were characterized using X-ray diffraction (XRD), X-ray fluorescence, N2 adsorption, and NH3 temperature-programmed desorption. The nanoporous HY zeolite with the highest HF was obtained by aging for 48 h and a crystallization time of 24 h. The acidity and crystallinity varied depending on the operating parameters. Incorporation of an appropriate amount of NaCl was also vital in maximizing the HF, crystallinity, and acidity. The sample crystallinities were determined by comparing their XRD peak intensities with those of a conventional Y zeolite. The results show that optimizing this process could lead to a widely acceptable commercial route for HY zeolite production.
  • 加载中
    1. [1]

      [1] Karami D, Rohani S. Chem Eng Process, 2009, 48: 1288

    2. [2]

      [2] Shen S C, Chen Q, Chow P S, Tan G H, Zeng X T, Wang Z, Tan R B H. J Phys Chem C, 2007, 111: 700

    3. [3]

      [3] Verhoef M J, Kooyman P J, van der Waal J C, Rigutto M S, Peters J A, van Bekkum H. Chem Mater, 2001, 13: 683

    4. [4]

      [4] Groen J C, Moulijn J A, Pérez-Ramírez J. J Mater Chem, 2006, 16: 2121

    5. [5]

      [5] Guo W P, Huang L M, Deng P, Xue Z Y, Li Q Z. Microporous Mesoporous Mater, 2001, 44-45: 427

    6. [6]

      [6] Huang L M, Guo W P, Deng P, Xue Z Y, Li Q Z. J Phys Chem B, 2000, 104: 2817

    7. [7]

      [7] Tan Q F, Bao X J, Song T C, Fan Y, Shi G, Shen B, Liu C H, Gao X H. J Catal, 2007, 251: 69

    8. [8]

      [8] Ogura M, Shinomiya S Y, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M. Appl Catal A, 2001, 219: 33

    9. [9]

      [9] Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. J Am Chem Soc, 2000, 122: 7116

    10. [10]

      [10] Han Y, Wu S, Sun Y Y, Li D S, Xiao F S, Liu J, Zhang X Z. Chem Mater, 2002, 14: 1144

    11. [11]

      [11] van Donk S, Janssen A H, Bitter J H, de Jong K P. Catal Rev-Sci Eng, 2003, 45: 297

    12. [12]

      [12] Xu M C, Cheng M J, Bao X H. Chem Commun, 2000: 1873

    13. [13]

      [13] Rong T J, Xiao J K. Mater Lett, 2002, 57: 297

    14. [14]

      [14] Lenarda M, Storaro L, Talon A, Moretti E, Riello P. J Colloid Interface Sci, 2007, 311: 537

    15. [15]

      [15] Liu X M, Yan Z F, Wang H P, Luo Y T. J Nat Gas Chem, 2003, 12: 63

    16. [16]

      [16] Chandrasekhar S, Pramada P. Appl Clay Sci, 2004, 27: 187

    17. [17]

      [17] Yu J, Shi J L, Chen H R, Yan J N, Yan D S. Microporous Mesoporous Mater, 2001, 46: 153

    18. [18]

      [18] Hosseinpour N, Mortazavi Y, Bazyari A, Khodadadi A A. Fuel Process Technol, 2009, 90: 171

    19. [19]

      [19] Frunz L, Prins R, Pirngruber G D. Microporous Mesoporous Mater, 2006, 88: 152

    20. [20]

      [20] Zheng J J, Yi Y M, Wang W L, Guo K, Ma J H, Li R F. Microporous Mesoporous Mater, 2013, 171: 44

    21. [21]

      [21] Pérez-Ramírez J, Verboekend D, Bonilla A, Abello S. Adv Funct Mater, 2009, 19: 3972

    22. [22]

      [22] Zheng J J, Zeng Q H, Yi Y M, Wang Y, Ma J H, Qin B, Zhang X W, Sun W F, Li R F. Catal Today, 2011, 168: 124

    23. [23]

      [23] Zheng J J, Zeng Q H, Zhang Y Y, Wang Y, Ma J H, Zhang X W, Sun W F, Li R F. Chem Mater, 2010, 22: 6065

    24. [24]

      [24] Konno H, Tago T, Nakasaka Y, Ohnaka R, Nishimura J I, Masuda T. Microporous Mesoporous Mater, 2013, 175: 25

    25. [25]

      [25] Konno H, Okamura T, Kawahara T, Nakasaka Y, Tago T, Masuda T. Chem Eng J, 2012, 207-208: 490

  • 加载中
    1. [1]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    11. [11]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    12. [12]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    15. [15]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    16. [16]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    17. [17]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    18. [18]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    19. [19]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    20. [20]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

Metrics
  • PDF Downloads(0)
  • Abstract views(384)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return