Citation: Yangyang Yuan, Hongchao Liu, Miao Yang, Shutao Xu, . Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1910-1919. doi: 10.1016/S1872-2067(15)60960-3 shu

Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance

  • Corresponding author:
  • Received Date: 16 July 2015
    Available Online: 18 July 2015

    Fund Project: 国家自然科学基金(21101150, 21476228, 21473182). (21101150, 21476228, 21473182)

  • The present study reports a novel strategy to fabricate nanocrystal-assembled hierarchical MOR zeolites. This is the first demonstration of hierarchical MOR without preferential growth along the c-axis, which facilitates mass transfer in the 12-membered ring channels of MOR zeolite for the conversions involving bulky molecules. The facile method involves the combined use of tetraethylammonium hydroxide (TEAOH) and commercial surfactants, in which TEAOH is essential for the construction of nanocrystal assemblies. The surfactant serves as a crystal growth-inhibiting agent to further inhibit nanocrystalline particle growth, resulting in enhanced mesoporosity. The hierarchical MOR assembled particles, constructed of 20-50-nm crystallites, exhibit superior catalytic properties in the alkylation of benzene with benzyl alcohol compared with the control sample, as the hierarchical MOR possesses a larger external surface area and longer c-axis dimension. More importantly, the material shows improved activity and stability in the dimethyl ether carbonylation to methyl acetate reaction, which is a novel route to produce ethanol from syngas.
  • 加载中
    1. [1]

      [1] Corma A. Chem Rev, 1997, 97: 2373

    2. [2]

      [2] Weitkamp J. Solid State Ionics, 2000, 131: 175

    3. [3]

      [3] Cheung P, Bhan A, Sunley G J, Law D J, Iglesia E. J Catal, 2007, 245: 110

    4. [4]

      [4] Tromp M, van Bokhoven J A, Oostenbrink M T G, Bitter J H, de Jong K P, Koningsberger D C. J Catal, 2000, 190: 209

    5. [5]

      [5] Becker K A, Karge H G, Streubel W D. J Catal, 1973, 28: 403

    6. [6]

      [6] Meier W M. Z Kristall, 1961, 115: 439

    7. [7]

      [7] Boronat M, Martínez C, Corma A. Phys Chem Chem Phys, 2011, 13: 2603

    8. [8]

      [8] Ordomsky V V, Ivanova I I, Knyazeva E E, Yuschenko V V, Zaikovskii V I. J Catal, 2012, 295: 207

    9. [9]

      [9] Leng K Y, Wang Y, Hou C M, Lancelot C, Lamonier C, Rives A, Sun Y Y. J Catal, 2013, 306: 100

    10. [10]

      [10] Yang M, Tian P, Wang C, Yuan Y Y, Yang Y, Xu S T, He Y L, Liu Z M. Chem Commun, 2014, 50: 1845

    11. [11]

      [11] Tosheva L, Valtchev V P. Chem Mater, 2005, 17: 2494

    12. [12]

      [12] Holm M S, Taarning E, Egeblad K, Christensen C H. Catal Today, 2011, 168: 3

    13. [13]

      [13] Chen L H, Li X Y, Rooke J C, Zhang Y H, Yang X Y, Tang Y, Xiao F S, Su B L. J Mater Chem, 2012, 22: 17381

    14. [14]

      [14] Ivanova I I, Knyazeva E E. Chem Soc Rev, 2013, 42: 3671

    15. [15]

      [15] Möller K, Bein T. Chem Soc Rev, 2013, 42: 3689

    16. [16]

      [16] Serrano D P, Escola J M, Pizarro P. Chem Soc Rev, 2013, 42: 4004

    17. [17]

      [17] Verboekend D, Milina M, Mitchell S, Pérez-Ramírez J. Cryst Growth Des, 2013, 13: 5025

    18. [18]

      [18] Li K H, Valla J, Garcia-Martinez J. ChemCatChem, 2014, 6: 46

    19. [19]

      [19] Yuan Y Y, Tian P, Yang M, Fan D, Wang L Y, Xu S T, Wang C, Wang D H, Yang Y, Liu Z M. RSC Adv, 2015, 5: 9852

    20. [20]

      [20] Wang Q Y, Wei Y X, Xu S T, Zhang M Z, Meng S H, Fan D, Qi Y, Li J Z, Yu Z X, Yuan C Y, He Y L, Xu S L, Chen J R, Wang J B, Su B L, Liu Z M. Chin J Catal (王全义, 魏迎旭, 徐舒涛, 张默之, 孟霜鹤, 樊栋, 齐越, 李金哲, 于政锡, 袁翠峪, 何艳丽, 徐庶亮, 陈景润, 王金棒, 苏宝连, 刘中民. 催化学报), 2014, 35: 1727

    21. [21]

      [21] Tao H X, Yang H, Zhang Y H, Ren J W, Liu X H, Wang Y Q, Lu G Z. J Mater Chem A, 2013, 1: 13821

    22. [22]

      [22] Li X Y, Sun M H, Rooke J C, Chen L H, Su B L. Chin J Catal (李小云, 孙明慧, Rooke J C, 陈丽华, 苏宝连. 催化学报), 2013, 34: 22

    23. [23]

      [23] Yang J H, Chu J, Wang J Q, Yin D H, Lu J M, Zhang Y. Chin J Catal (杨建华, 初筠, 王金渠, 殷德宏, 鲁金明, 张艳. 催化学报), 2014, 35: 49

    24. [24]

      [24] Huang S J, Liu X H, Yu L L, Miao S, Liu Z N, Zhang S, Xie S J, Xu L Y. Microporous Mesoporous Mater, 2014, 191: 18

    25. [25]

      [25] Góra-Marek K, Tarach K, Tekla J, Olejniczak Z, Kuśtrowski P, Liu L C, Martinez-Triguero J, Rey F. J Phy Chem C, 2014, 118: 28043

    26. [26]

      [26] Tang T D, Zhang L, Fu W Q, Ma Y L, Xu J, Jiang J, Fang G, Y Xiao F S. J Am Chem Soc, 2013, 135: 11437

    27. [27]

      [27] Kim J, Jo C, Lee S, Ryoo R. J Mater Chem A, 2014, 2: 11905

    28. [28]

      [28] Liu Y H, Zhao N, Xian H, Cheng Q P, Tan Y S, Tsubaki N, Li X G. ACS Appl Mater Interfaces, 2015, 7: 8398

    29. [29]

      [29] Inagaki S, Watanabe Y, Nishita Y, Kubota Y. Chem Lett, 2013, 42: 186

    30. [30]

      [30] Lee S H, Lee D K, Shin C H, Paik W C, Lee W M, Hong S B. J Catal, 2000, 196: 158

    31. [31]

      [31] Xue H F, Huang X M, Ditzel E, Zhan E S, Ma M, Shen W J. Ind Eng Chem Res, 2013, 52: 11510

    32. [32]

      [32] Jo C, Jung J, Shin H S, Kim J, Ryoo R. Angew Chem Int Ed, 2013, 52: 10014

    33. [33]

      [33] Liu Y, Zhou X Z, Pang X M, Jin Y Y, Meng X J, Zheng X H, Gao X H, Xiao F S. ChemCatChem, 2013, 5: 1517

    34. [34]

      [34] Oumi Y, Kakinaga Y, Kodaira T, Teranishi T, Sano T. J Mater Chem, 2003, 13: 181

    35. [35]

      [35] Lu B W, Tsuda T, Oumi Y, Itabashi K, Sano T. Microporous Mesoporous Mater, 2004, 76: 1

    36. [36]

      [36] Lv A L, Xu H, Wu H H, Liu Y M, Wu P. Microporous Mesoporous Mater, 2011, 145: 80

    37. [37]

      [37] Li F, Yang L L, Xu G, Huang X Q, Yang X, Wei X, Ren Z H, Shen G, Han G R. J Alloys Compd, 2013, 577: 663

    38. [38]

      [38] Jelfs K E, Slater B, Lewis D W, Willock D J. Stud Surf Sci Catal, 2007, 170: 1685

    39. [39]

      [39] Che S N, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T. Nature, 2004, 429: 281

    40. [40]

      [40] Valtchev V P, Tosheva L, Bozhilov K N. Langmuir, 2005, 21: 10724

    41. [41]

      [41] Larsen S C. J Phy Chem C, 2007, 111: 18464

    42. [42]

      [42] Dědeček J, Sobalík Z, Wichterlová B. Catal Rev-Sci Eng, 2012, 54: 135

    43. [43]

      [43] Tarach K, Góra-Marek K, Tekla J, Brylewska K, Datka J, Mlekodaj K, Makowski W, López M C I, Triguero J M, Rey F. J Catal, 2014, 312: 46

    44. [44]

      [44] Coq B, Gourves V, Figuéras F. Appl Catal A, 1993, 100: 69

    45. [45]

      [45] Cheung P, Bhan A, Sunley G J, Iglesia E. Angew Chem Int Ed, 2006, 45: 1617

    46. [46]

      [46] Liu J L, Xue H F, Huang X M, Wu P H, Huang S J, Liu S B, Shen W J. Chin J Catal (刘俊龙, 薛会福, 黄秀敏, 吴培豪, 黄信炅, 刘尚斌, 申文杰. 催化学报), 2010, 31: 729

    47. [47]

      [47] Boronat M, Martínez-Sánchez C, Law D, Corma A. J Am Chem Soc, 2008, 130: 16316

    48. [48]

      [48] Zhou H, Zhu W L, Shi L, Liu H C, Liu S P, Xu S T, Ni Y M, Liu Y, Li L L, Liu Z M. Catal Sci Technol, 2015, 5: 1961

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    5. [5]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    6. [6]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    15. [15]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    16. [16]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(0)
  • Abstract views(958)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return