Citation: Yangyang Yuan, Hongchao Liu, Miao Yang, Shutao Xu, . Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1910-1919. doi: 10.1016/S1872-2067(15)60960-3 shu

Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance

  • Corresponding author:
  • Received Date: 16 July 2015
    Available Online: 18 July 2015

    Fund Project: 国家自然科学基金(21101150, 21476228, 21473182). (21101150, 21476228, 21473182)

  • The present study reports a novel strategy to fabricate nanocrystal-assembled hierarchical MOR zeolites. This is the first demonstration of hierarchical MOR without preferential growth along the c-axis, which facilitates mass transfer in the 12-membered ring channels of MOR zeolite for the conversions involving bulky molecules. The facile method involves the combined use of tetraethylammonium hydroxide (TEAOH) and commercial surfactants, in which TEAOH is essential for the construction of nanocrystal assemblies. The surfactant serves as a crystal growth-inhibiting agent to further inhibit nanocrystalline particle growth, resulting in enhanced mesoporosity. The hierarchical MOR assembled particles, constructed of 20-50-nm crystallites, exhibit superior catalytic properties in the alkylation of benzene with benzyl alcohol compared with the control sample, as the hierarchical MOR possesses a larger external surface area and longer c-axis dimension. More importantly, the material shows improved activity and stability in the dimethyl ether carbonylation to methyl acetate reaction, which is a novel route to produce ethanol from syngas.
  • 加载中
    1. [1]

      [1] Corma A. Chem Rev, 1997, 97: 2373

    2. [2]

      [2] Weitkamp J. Solid State Ionics, 2000, 131: 175

    3. [3]

      [3] Cheung P, Bhan A, Sunley G J, Law D J, Iglesia E. J Catal, 2007, 245: 110

    4. [4]

      [4] Tromp M, van Bokhoven J A, Oostenbrink M T G, Bitter J H, de Jong K P, Koningsberger D C. J Catal, 2000, 190: 209

    5. [5]

      [5] Becker K A, Karge H G, Streubel W D. J Catal, 1973, 28: 403

    6. [6]

      [6] Meier W M. Z Kristall, 1961, 115: 439

    7. [7]

      [7] Boronat M, Martínez C, Corma A. Phys Chem Chem Phys, 2011, 13: 2603

    8. [8]

      [8] Ordomsky V V, Ivanova I I, Knyazeva E E, Yuschenko V V, Zaikovskii V I. J Catal, 2012, 295: 207

    9. [9]

      [9] Leng K Y, Wang Y, Hou C M, Lancelot C, Lamonier C, Rives A, Sun Y Y. J Catal, 2013, 306: 100

    10. [10]

      [10] Yang M, Tian P, Wang C, Yuan Y Y, Yang Y, Xu S T, He Y L, Liu Z M. Chem Commun, 2014, 50: 1845

    11. [11]

      [11] Tosheva L, Valtchev V P. Chem Mater, 2005, 17: 2494

    12. [12]

      [12] Holm M S, Taarning E, Egeblad K, Christensen C H. Catal Today, 2011, 168: 3

    13. [13]

      [13] Chen L H, Li X Y, Rooke J C, Zhang Y H, Yang X Y, Tang Y, Xiao F S, Su B L. J Mater Chem, 2012, 22: 17381

    14. [14]

      [14] Ivanova I I, Knyazeva E E. Chem Soc Rev, 2013, 42: 3671

    15. [15]

      [15] Möller K, Bein T. Chem Soc Rev, 2013, 42: 3689

    16. [16]

      [16] Serrano D P, Escola J M, Pizarro P. Chem Soc Rev, 2013, 42: 4004

    17. [17]

      [17] Verboekend D, Milina M, Mitchell S, Pérez-Ramírez J. Cryst Growth Des, 2013, 13: 5025

    18. [18]

      [18] Li K H, Valla J, Garcia-Martinez J. ChemCatChem, 2014, 6: 46

    19. [19]

      [19] Yuan Y Y, Tian P, Yang M, Fan D, Wang L Y, Xu S T, Wang C, Wang D H, Yang Y, Liu Z M. RSC Adv, 2015, 5: 9852

    20. [20]

      [20] Wang Q Y, Wei Y X, Xu S T, Zhang M Z, Meng S H, Fan D, Qi Y, Li J Z, Yu Z X, Yuan C Y, He Y L, Xu S L, Chen J R, Wang J B, Su B L, Liu Z M. Chin J Catal (王全义, 魏迎旭, 徐舒涛, 张默之, 孟霜鹤, 樊栋, 齐越, 李金哲, 于政锡, 袁翠峪, 何艳丽, 徐庶亮, 陈景润, 王金棒, 苏宝连, 刘中民. 催化学报), 2014, 35: 1727

    21. [21]

      [21] Tao H X, Yang H, Zhang Y H, Ren J W, Liu X H, Wang Y Q, Lu G Z. J Mater Chem A, 2013, 1: 13821

    22. [22]

      [22] Li X Y, Sun M H, Rooke J C, Chen L H, Su B L. Chin J Catal (李小云, 孙明慧, Rooke J C, 陈丽华, 苏宝连. 催化学报), 2013, 34: 22

    23. [23]

      [23] Yang J H, Chu J, Wang J Q, Yin D H, Lu J M, Zhang Y. Chin J Catal (杨建华, 初筠, 王金渠, 殷德宏, 鲁金明, 张艳. 催化学报), 2014, 35: 49

    24. [24]

      [24] Huang S J, Liu X H, Yu L L, Miao S, Liu Z N, Zhang S, Xie S J, Xu L Y. Microporous Mesoporous Mater, 2014, 191: 18

    25. [25]

      [25] Góra-Marek K, Tarach K, Tekla J, Olejniczak Z, Kuśtrowski P, Liu L C, Martinez-Triguero J, Rey F. J Phy Chem C, 2014, 118: 28043

    26. [26]

      [26] Tang T D, Zhang L, Fu W Q, Ma Y L, Xu J, Jiang J, Fang G, Y Xiao F S. J Am Chem Soc, 2013, 135: 11437

    27. [27]

      [27] Kim J, Jo C, Lee S, Ryoo R. J Mater Chem A, 2014, 2: 11905

    28. [28]

      [28] Liu Y H, Zhao N, Xian H, Cheng Q P, Tan Y S, Tsubaki N, Li X G. ACS Appl Mater Interfaces, 2015, 7: 8398

    29. [29]

      [29] Inagaki S, Watanabe Y, Nishita Y, Kubota Y. Chem Lett, 2013, 42: 186

    30. [30]

      [30] Lee S H, Lee D K, Shin C H, Paik W C, Lee W M, Hong S B. J Catal, 2000, 196: 158

    31. [31]

      [31] Xue H F, Huang X M, Ditzel E, Zhan E S, Ma M, Shen W J. Ind Eng Chem Res, 2013, 52: 11510

    32. [32]

      [32] Jo C, Jung J, Shin H S, Kim J, Ryoo R. Angew Chem Int Ed, 2013, 52: 10014

    33. [33]

      [33] Liu Y, Zhou X Z, Pang X M, Jin Y Y, Meng X J, Zheng X H, Gao X H, Xiao F S. ChemCatChem, 2013, 5: 1517

    34. [34]

      [34] Oumi Y, Kakinaga Y, Kodaira T, Teranishi T, Sano T. J Mater Chem, 2003, 13: 181

    35. [35]

      [35] Lu B W, Tsuda T, Oumi Y, Itabashi K, Sano T. Microporous Mesoporous Mater, 2004, 76: 1

    36. [36]

      [36] Lv A L, Xu H, Wu H H, Liu Y M, Wu P. Microporous Mesoporous Mater, 2011, 145: 80

    37. [37]

      [37] Li F, Yang L L, Xu G, Huang X Q, Yang X, Wei X, Ren Z H, Shen G, Han G R. J Alloys Compd, 2013, 577: 663

    38. [38]

      [38] Jelfs K E, Slater B, Lewis D W, Willock D J. Stud Surf Sci Catal, 2007, 170: 1685

    39. [39]

      [39] Che S N, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T. Nature, 2004, 429: 281

    40. [40]

      [40] Valtchev V P, Tosheva L, Bozhilov K N. Langmuir, 2005, 21: 10724

    41. [41]

      [41] Larsen S C. J Phy Chem C, 2007, 111: 18464

    42. [42]

      [42] Dědeček J, Sobalík Z, Wichterlová B. Catal Rev-Sci Eng, 2012, 54: 135

    43. [43]

      [43] Tarach K, Góra-Marek K, Tekla J, Brylewska K, Datka J, Mlekodaj K, Makowski W, López M C I, Triguero J M, Rey F. J Catal, 2014, 312: 46

    44. [44]

      [44] Coq B, Gourves V, Figuéras F. Appl Catal A, 1993, 100: 69

    45. [45]

      [45] Cheung P, Bhan A, Sunley G J, Iglesia E. Angew Chem Int Ed, 2006, 45: 1617

    46. [46]

      [46] Liu J L, Xue H F, Huang X M, Wu P H, Huang S J, Liu S B, Shen W J. Chin J Catal (刘俊龙, 薛会福, 黄秀敏, 吴培豪, 黄信炅, 刘尚斌, 申文杰. 催化学报), 2010, 31: 729

    47. [47]

      [47] Boronat M, Martínez-Sánchez C, Law D, Corma A. J Am Chem Soc, 2008, 130: 16316

    48. [48]

      [48] Zhou H, Zhu W L, Shi L, Liu H C, Liu S P, Xu S T, Ni Y M, Liu Y, Li L L, Liu Z M. Catal Sci Technol, 2015, 5: 1961

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    5. [5]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    6. [6]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    7. [7]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    8. [8]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    9. [9]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    10. [10]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    11. [11]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    12. [12]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    13. [13]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    20. [20]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

Metrics
  • PDF Downloads(0)
  • Abstract views(1067)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return