Citation: Tayebe Rostami, Majid Jafarian, Somaieh Miandari, Mohammad G. Mahjani, Fereydoon Gobal. Synergistic effect of cobalt and copper on a nickel-based modified graphite electrode during methanol electro-oxidation in NaOH solution[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1867-1874. doi: 10.1016/S1872-2067(15)60959-7 shu

Synergistic effect of cobalt and copper on a nickel-based modified graphite electrode during methanol electro-oxidation in NaOH solution

  • Corresponding author: Majid Jafarian, 
  • Received Date: 25 May 2015
    Available Online: 30 July 2015

  • The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of methanol, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a significantly higher response for methanol oxidation compared to the other samples. The anodic peak currents showed a linear dependency on the square root of the scan rate, which is a characteristic of a diffusion controlled process. During CA studies, the reaction exhibited Cottrellin behavior and the diffusion coefficient of methanol was determined to be 6.25×10-6 cm2/s and the catalytic rate constant, K, for methanol oxidation was found to be 40×107 cm3/(mol·s). EIS was used to investigate the catalytic oxidation of methanol on the surface of the modified electrode.
  • 加载中
    1. [1]

      [1] Ren X M, Zelenay P, Thomas S, Davey J, Gottesfeld S. J Power Sources, 2000, 86: 111

    2. [2]

      [2] Hosseini M G, Momeni M M. Electrochim Acta, 2012, 70: 1

    3. [3]

      [3] Heli H, Jafarian M G, Mahjani M, Gobal F. Electrochim acta, 2004, 49: 4999

    4. [4]

      [4] Scott K, Taama W M, Argyropoulos P. J Power Sources, 1999, 79: 43

    5. [5]

      [5] Kim J, Momma T, Osaka T. J Power Sources, 2009, 189: 999

    6. [6]

      [6] Wang Y, Li L, Hu L, Zhuang L, Lu J T, Xu B Q. Electrochem Commun, 2003, 5: 662

    7. [7]

      [7] Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani M G. J Solid State Electrochem, 2009, 13: 1171

    8. [8]

      [8] Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M G. Int J Hydrogen Energy, 2008, 33: 4367

    9. [9]

      [9] Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M G. Int J Hydrogen Energy, 2009, 34: 859

    10. [10]

      [10] Nonaka H, Matsumura Y. J Electroanal Chem, 2002, 520: 101

    11. [11]

      [11] Li W Z, Liang C H, Zhou W J, Qiu J S, Zhou Z H, Sun G Q, Xin Q. J Phys Chem B, 2003, 107: 6292

    12. [12]

      [12] Léger J M. J Appl Electrochem, 2001, 31: 767

    13. [13]

      [13] Iwasita T, Hoster H, John-Anacker A, Lin W F, Vielstich W. Langmuir, 2000, 16: 522

    14. [14]

      [14] Jafarian M, Mahjani M, Heli H, Gobal F, Khajehsharifi H, Hamedi M. Electrochim Acta, 2003, 48: 3423

    15. [15]

      [15] Lima A, Coutanceau C, Léger J M, Lamy C. J Appl Electrochem, 2001, 31: 379

    16. [16]

      [16] Lu C, Rice C, Masel R, Babu P K, Waszczuk P, Kim H S, Oldfield E, Wieckowski A. J Phys Chem B, 2002, 106: 9581

    17. [17]

      [17] Xu D, Liu Z P, Yang H Z, Liu Q S, Zhang J, Fang J Y, Zou S Z, Sun K. Angew Chem Int Ed, 2009, 48: 4217

    18. [18]

      [18] Min M K, Cho J, Cho K, Kim H. Electrochim Acta, 2000, 45: 4211

    19. [19]

      [19] Wang C, Waje M, Wang X, Tang J M, Haddon R C, Yan Y S. Nano Lett, 2004, 4: 345

    20. [20]

      [20] Fleischmann M, Korinek K, Pletcher D. J Electroanal Chem Interf Electrochem, 1971, 31: 39

    21. [21]

      [21] Golikand A N, Asgari M, Maragheh M G, Shahrokhian S. J Electroanal Chem, 2006, 588: 155

    22. [22]

      [22] Golikand A N, Shahrokhian S, Asgari M, Maragheh M G, Irannejad L, Khanchi A. J Power Sources, 2005, 144: 21

    23. [23]

      [23] Guo Y M, Hu C G, Yang L, Bai Z Y, Wang K, Chao S J. Electrochem Commun, 2011, 13: 886

    24. [24]

      [24] Hosseini M G, Abdolmaleki M, Ashrafpoor S. Chin J Catal (催化学报), 2013, 34: 1712

    25. [25]

      [25] Ojani R, Raoof J B, Zavvarmahalleh S R H. Electrochim Acta, 2008, 53: 2402

    26. [26]

      [26] Ortega J M. Thin Solid Films, 2000, 360: 159

    27. [27]

      [27] Rahim M A A, Abdel Hameed R M, Khalil M W. J Power Sources, 2004, 134: 160

    28. [28]

      [28] Entina V S, Petrii O A. Elektrokhimiya, 1967, 3: 1237

    29. [29]

      [29] Koch D F A, Rand D A J, Woods R. J Electroanal Chem Interf Electrochem, 1976, 70: 73

    30. [30]

      [30] Li M Y, Zhao S Z, Han G Y, Yang B S. J Power Sources, 2009, 191: 351

    31. [31]

      [31] Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M G. Electrochim Acta, 2008, 53: 6602

    32. [32]

      [32] Jafarian M, Moghaddam R B, Mahjani M G, Gobal F. J Appl Electrochem, 2006, 36: 913

    33. [33]

      [33] Jafarian M, Haghighatbin M A, Gobal F, Mahjani M G, Rayati S. J Electroanal Chem, 2011, 663: 14

    34. [34]

      [34] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. New York: Wiley and Sons, 2001. Ch. 5, 12, 14

  • 加载中
    1. [1]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    2. [2]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    4. [4]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    7. [7]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    9. [9]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    10. [10]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    13. [13]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    14. [14]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    15. [15]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    16. [16]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    17. [17]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    20. [20]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

Metrics
  • PDF Downloads(0)
  • Abstract views(415)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return