Citation:
Xin Zhao, Lei Huang, Hongrui Li, Hang Hu, Jin Han, Liyi Shi, Dengsong Zhang. Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1886-1899.
doi:
10.1016/S1872-2067(15)60958-5
-
Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ℃. The results of X-ray photoelectron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas.
-
Keywords:
- deNOx,
- Selective catalytic reduction,
- Vanadate,
- Transition metal
-
-
-
[1]
[1] Zhang L, Shi L Y, Huang L, Zhang J P, Gao R H, Zhang D S. ACS Catal, 2014, 4: 1753
-
[2]
[2] Kamolphop U, Taylor S F R, Breen J P, Burch R, Delgado J J, Chansai S, Hardacre C, Hengrasmee S, James S L. ACS Catal, 2011, 1: 1257
-
[3]
[3] Deka U, Lezcano-Gonzalez I, Weckhuysen B M, Beale A M. ACS Catal, 2013, 3: 413
-
[4]
[4] Maitarad P, Zhang D S, Gao R H, Shi L Y, Li H R, Huang L, Rungrotmongkol T, Zhang J P. J Phys Chem C, 2013, 117: 9999
-
[5]
[5] Chen L, Li J H, Ge M F. J Phys Chem C, 2009, 113: 21177
-
[6]
[6] Ettireddy P R, Ettireddy N, Boningari T, Pardemann R, Smirniotis P G. J Catal, 2012, 292: 53
-
[7]
[7] Phil H H, Reddy M P, Kumar P A, Ju L K, Hyo J S. Appl Catal B, 2008, 78: 301
-
[8]
[8] Bai S L, Zhao J H, Wang L, Zhu Z P. Catal Today, 2010, 158: 393
-
[9]
[9] Kompio P G W A, Brückner A, Hipler F, Auer G, Löffler E, Grünert W. J Catal, 2012, 286: 237
-
[10]
[10] Putluru S S R, Schill L, Gardini D, Mossin S, Wagner J B, Jensen A D, Fehrmann R. J Mater Sci, 2014, 49: 2705
-
[11]
[11] Camposeco R, Castillo S, Mugica V, Mejía-Centeno I, Marín J. Chem Eng J, 2014, 242: 313
-
[12]
[12] Koh H L, Park H K. J Ind Eng Chem, 2013, 19: 73
-
[13]
[13] Centeno M A, Malet P, Carrizosa I, Odriozola J A. J Phys Chem B, 2000, 104: 3310
-
[14]
[14] Lietti L, Nova I, Forzatti P. Top Catal, 2000, 11-12: 111
-
[15]
[15] Lietti L, Nova I, Ramis G, Dall'Acqua L, Busca G, Giamello E, Forzatti P, Bregani F. J Catal, 1999, 187: 419
-
[16]
[16] Du X S, Gao X, Fu Y C, Gao F, Luo Z Y, Cen K F. J Colloid Interface Sci, 2012, 368: 406
-
[17]
[17] Li Q, Yang H S, Nie A M, Fan X Y, Zhang X B. Catal Lett, 2011, 141: 1237
-
[18]
[18] Putluru S S R, Riisager A, Fehrmann R. Catal Lett, 2009, 133: 370
-
[19]
[19] Gao R H, Zhang D S, Liu X G, Shi L Y, Maitarad P, Li H R, Zhang J P, Cao W G. Catal Sci Technol, 2013, 3: 191
-
[20]
[20] Lee K J, Kumar P A, Maqbool M S, Rao K N, Song K H, Ha H P. Appl Catal B, 2013, 142-143: 705
-
[21]
[21] Lee K J, Maqbool M S, Kumar P A, Song K H, Ha H P. Catal Lett, 2013, 143: 988
-
[22]
[22] Ettireddy P R, Ettireddy N, Mamedov S, Boolchand P, Smirniotis P G. Appl Catal B, 2007, 76: 123
-
[23]
[23] Vargas M A L, Casanova M, Trovarelli A, Busca G. Appl Catal B, 2007, 75: 303
-
[24]
[24] Boningari T, Koirala R, Smirniotis P G. Appl Catal B, 2012, 127: 255
-
[25]
[25] Sagar A, Trovarelli A, Casanova M, Schermanz K. SAE Int J Engines, 2011, 4: 1839
-
[26]
[26] Yang S J, Wang C Z, Ma L, Peng Y, Qu Z, Yan N Q, Chen J H, Chang H Z, Li J H. Catal Sci Technol, 2013, 3: 161
-
[27]
[27] Liu Z M, Li Y, Zhu T L, Su H, Zhu J Z. Ind Eng Chem Res, 2014, 53: 12964
-
[28]
[28] Huang L, Shi L Y, Zhao X, Xu J, Li H R, Zhang J P, Zhang D S. CrystEngComm, 2014, 16: 5128
-
[29]
[29] Liu F D, He H, Lian Z H, Shan W P, Xie L J, Asakura K, Yang W W, Deng H. J Catal, 2013, 307: 340
-
[30]
[30] Casanova M, Schermanz K, Llorca J, Trovarelli A. Catal Today, 2012, 184: 227
-
[31]
[31] Park E, Kim M, Jung H, Chin S, Jurng J. ACS Catal, 2013, 3: 1518
-
[32]
[32] Zhang J, Xu Q, Li M J, Feng Z C, Li C. J Phys Chem C, 2009, 113: 1698
-
[33]
[33] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem Int Ed, 2008, 47: 1766
-
[34]
[34] Gao X T, Jehng J M, Wachs I E. J Catal, 2002, 209: 43
-
[35]
[35] Giakoumelou I, Fountzoula C, Kordulis C, Boghosian S. J Catal, 2006, 239: 1
-
[36]
[36] Besselmann S, Löffler E, Muhler M. J Mol Catal A, 2000, 162: 401
-
[37]
[37] Huang L, Zhao X, Zhang L, Shi L Y, Zhang J P, Zhang D S. Nanoscale, 2015, 7: 2743
-
[38]
[38] Li K R, Wang Y J, Wang S R, Zhu B L, Zhang S M, Huang W P, Wu S H. J Nat Gas Chem, 2009, 18: 449
-
[39]
[39] Huo C L, Ouyang J, Yang H M. Sci Rep, 2014, 4: 3682
-
[40]
[40] Zhao W, Zhong Q, Pan Y X, Zhang R. Chem Eng J, 2013, 228: 815
-
[41]
[41] Zhao Y B, Qin Z F, Wang G F, Dong M, Huang L C, Wu Z W, Fan W B, Wang J G. Fuel, 2013, 104: 22
-
[42]
[42] Chen S, Chu W, Liu X, Tong D G. J Nat Gas Chem, 2011, 20: 553
-
[43]
[43] Liu F D, He H, Zhang C B, Feng Z C, Zheng L R, Xie Y N, Hu T D. Appl Catal B, 2010, 96: 408
-
[44]
[44] Trawczyński J, Bielak B, Miśta W. Appl Catal B, 2005, 55: 277
-
[45]
[45] Zheng J, Chu W, Zhang H, Jiang C F, Dai X Y. J Nat Gas Chem, 2010, 19: 583
-
[46]
[46] Li C M, Zhou J Y, Gao W, Zhao J W, Liu J, Zhao Y F, Wei M, Evans D G, Duan X. J Mater Chem A, 2013, 1: 5370
-
[47]
[47] Palacio L A, Silva J M, Ribeiro F R, Ribeiro M F. Catal Today, 2008, 133-135: 502
-
[48]
[48] Nguyen L D, Loridant S, Launay H, Pigamo A, Dubois J L, Millet J M M. J Catal, 2006, 237: 38
-
[49]
[49] Chary K V R, Kumar C P, Rajiah T, Srikanth C S. J Mol Catal A, 2006, 258: 313
-
[50]
[50] Palacio L A, Silva E R, Catalão R, Silva J M, Hoyos D A, Ribeiro F R, Ribeiro M F. J Hazard Mater, 2008, 153: 628
-
[51]
[51] Casanova M, Schermanz K, Llorca J, Trovarelli A. Catal Today, 2012, 184: 227
-
[52]
[52] Cai S X, Zhang D S, Zhang L, Huang L, Li H R, Gao R H, Shi L Y, Zhang J P. Catal Sci Technol, 2014, 4: 93
-
[53]
[53] Fang C, Zhang D S, Shi L Y, Gao R H, Li H R, Ye L P, Zhang J P. Catal Sci Technol, 2013, 3: 803
-
[54]
[54] Zhang D S, Zhang L, Shi L Y, Fang C, Li H R, Gao R H, Huang L, Zhang J P. Nanoscale, 2013, 5: 1127
-
[55]
[55] Zhang L, Zhang D S, Zhang J P, Ca i S X, Fang C, Huang L, Li H R, Gao R H, Shi L Y. Nanoscale, 2013, 5: 9821
-
[56]
[56] Fang C, Zhang D S, Cai S X, Zhang L, Huang L, Li H R, Maitarad P, Shi L Y, Gao R H, Zhang J P. Nanoscale, 2013, 5: 9199
-
[57]
[57] Shan W P, Liu F D, He H, Shi X Y, Zhang C B. Catal Today, 2012, 184: 160
-
[58]
[58] Shan W P, Liu F D, He H, Shi X Y, Zhang C B. Appl Catal B, 2012, 115-116: 100
-
[59]
[59] Tronconi E, Nova I, Ciardelli C, Chatterjee D, Weibel M. J Catal, 2007, 245: 1
-
[60]
[60] Koebel M, Madia G, Raimondi F, Wokaun A. J Catal, 2002, 209: 159
-
[61]
[61] Schwidder M, Heikens S, De Toni A, Geisler S, Berndt M, Brückner A, Grünert W. J Catal, 2008, 259: 96
-
[62]
[62] Shi X Y, Liu F D, Xie L J, Shan W P, He H. Environ Sci Technol, 2013, 47: 3293
-
[63]
[63] Liu F D, Asakura K, He H, Liu Y C, Shan W P, Shi X Y, Zhang C B. Catal Today, 2011, 164: 520
-
[64]
[64] Long R Q, Yang R T. J Catal, 2002, 207: 158
-
[65]
[65] Cheng L S, Yang R T, Chen N. J Catal, 1996, 164: 70
-
[66]
[66] Liu F D, He H. J Phys Chem C, 2010, 114: 16929
-
[67]
[67] Chmielarz L, Dziembaj R, Grzybek T, Klinik J, Łojewski T, Olszewska D, Węgrzyn A. Catal Lett, 2000, 70: 51
-
[68]
[68] Wu Z B, Jiang B Q, Liu Y, Wang H Q, Jin R B. Environ Sci Technol, 2007, 41: 5812
-
[69]
[69] Chen L, Li J H, Ge M F. Environ Sci Technol, 2010, 44: 9590
-
[70]
[70] Peng Y, Wang C Z, Li J H. Appl Catal B, 2014, 144: 538
-
[71]
[71] Zhu J, Gao F, Dong L H, Yu W J, Qi L, Wang Z, Dong L, Chen Y. Appl Catal B, 2010, 95: 144
-
[72]
[72] Gu T T, Jin R B, Liu Y, Liu H F, Weng X L, Wu Z B. Appl Catal B, 2013, 129: 30
-
[73]
[73] Liu F D, He H, Ding Y, Zhang C B. Appl Catal B, 2009, 93: 194
-
[74]
[74] Larrubia M A, Ramis G, Busca G. Appl Catal B, 2001, 30: 101
-
[75]
[75] Qi G, Yang R T, Chang R. Appl Catal B, 2004, 51: 93
-
[76]
[76] Long R Q, Yang R T. J Catal, 2002, 207: 224
-
[77]
[77] Zhou G Y, Zhong B C, Wang W H, Guan X J, Huang B C, Ye D Q, Wu H J. Catal Today, 2011, 175: 157
-
[78]
[78] Foo R, Vazhnova T, Lukyanov D B, Millington P, Collier J, Rajaram R, Golunski S. Appl Catal B, 2015, 162: 174
-
[79]
[79] Burkardt A, Weisweiler W, van den Tillaart J A A, Schäfer- Sindlinger A, Lox E S. Top Catal, 2001, 16-17: 369
-
[80]
[80] Si Z C, Weng D, Wu X D, Li J, Li G. J Catal, 2010, 271: 43
-
[81]
[81] Zhang Q L, Song Z X, Ning P, Liu X, Li H, Gu J J. Catal Commun, 2015, 59: 170
-
[1]
-
-
-
[1]
Yan Qi , Yueqin Yu , Weisi Guo , Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021
-
[2]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[3]
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
-
[4]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[5]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[6]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[7]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[8]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[9]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[10]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[11]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010
-
[12]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[13]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[14]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008
-
[15]
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051
-
[16]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[17]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[18]
Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111
-
[19]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[20]
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(801)
- HTML views(91)