Citation: Zhifeng Dai, Fang Chen, Qi Sun, Yanyan Ji, Liang Wang, Xiangju Meng, Feng-Shou Xiao. A Pd-metalated porous organic polymer as a highly efficient heterogeneous catalyst for C-C couplings[J]. Chinese Journal of Catalysis, ;2016, 37(1): 54-60. doi: 10.1016/S1872-2067(15)60952-4 shu

A Pd-metalated porous organic polymer as a highly efficient heterogeneous catalyst for C-C couplings

  • Corresponding author: Xiangju Meng, 
  • Received Date: 20 May 2015
    Available Online: 28 June 2015

    Fund Project: 国家自然科学基金(21422306, 21203165, 21403193) (21422306, 21203165, 21403193) 中央高校基本科研业务费专项资金(2015XZZX004-04). (2015XZZX004-04)

  • An efficient catalyst system based on a Pd-metalated porous organic polymer bearing phenanthroline ligands was designed and synthesized. This catalyst was applied to various C-C bond-forming reactions, including the Suzuki, Heck and Sonogashira couplings, and afforded the corresponding products while exhibiting excellent activities and selectivities. More importantly, this catalyst can be readily recycled. These features show that such catalysts have significant potential applications in the future.
  • 加载中
    1. [1]

      [1] F. Diederich, A. de Meijere, Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Wiley-VCH, Weinheim, 2004, 4.

    2. [2]

      [2] L. X. Yin, J. Liebscher, Chem. Rev., 2007, 107, 133.

    3. [3]

      [3] N. Miyaura, A. Suzuki, Chem. Rev., 1995, 95, 2457.

    4. [4]

      [4] C. M. Wei, C. J. Li, J. Am. Chem. Soc., 2003, 125, 9584.

    5. [5]

      [5] J. Magano, J. R. Dunetz, Chem. Rev., 2011, 111, 2177.

    6. [6]

      [6] N. E. Leadbeater, M. Marco, Chem. Rev., 2002, 102, 3217.

    7. [7]

      [7] W. Watanabe, T. Maekawa, Y. Miyazaki, T. Kida, K. Takeshita, A. Mori, Chem Asian J., 2012, 7, 1679.

    8. [8]

      [8] M. Bakherad, A. Keivanloo, S. Samangooei, Chin. J. Catal., 2014, 35, 324.

    9. [9]

      [9] C. E. Garrett, K. Prasad, Adv. Synth. Catal., 2004, 346, 889.

    10. [10]

      [10] C. J. Welch, J. Albaneze-Walker, W. R. Leonard, M. Biba, J. DaSilva, D. Henderson, B. Laing, D. J. Mathre, S. Spencer, X. D. Bu, T. B. Wang, Org. Process Res. Dev., 2005, 9, 198.

    11. [11]

      [11] H. U. Blaser, A. Indolese, A. Schnyder, H. Steiner, M. Studer, J. Mol. Catal. A, 2001, 173, 3.

    12. [12]

      [12] B. M. Bhanage, M. Arai, Catal. Rev., 2001, 43, 315.

    13. [13]

      [13] X. Jin, V. V. Balasubramanian, S. T. Selvan, D. P. Sawant, M. A. Chari, G. Q. Lu, A. Vinu, Angew. Chem. Int. Ed., 2009, 48, 7884.

    14. [14]

      [14] M. Kawaguchi, S. Yagi, H. Enomoto, Carbon, 2004, 42, 345.

    15. [15]

      [15] Q. H. Fan, Y. M. Li, A. S. C. Chan, Chem. Rev., 2002, 102, 3385.

    16. [16]

      [16] S. Minakata, M. Komatsu, Chem. Rev., 2009, 109, 711.

    17. [17]

      [17] D. E. De Vos, M. Dams, B. F. Sels, P. A. Jacobs, Chem. Rev., 2002, 102, 3615.

    18. [18]

      [18] A. Taguchi, F. Schuth, Microporous Mesoporous Mater., 2005, 77, 1.

    19. [19]

      [19] M. Hartmann, Chem. Mater., 2005, 17, 4577.

    20. [20]

      [20] A. Corma, H. Garcia, Adv. Synth. Catal., 2006, 348, 1391.

    21. [21]

      [21] A. Thomas, Angew. Chem. Int. Ed., 2010, 49, 8328.

    22. [22]

      [22] Q. Sun, M. Jiang, Z. J. Shen, Y. Y. Jin, S. X. Pan, L. Wang, X. J. Meng, W. Z. Chen, Y. J. Ding, J. X. Li, F-S. Xiao, Chem. Commun., 2014, 50, 11844.

    23. [23]

      [23] Q. Sun, Z. F. Dai, X. L. Liu, N. Sheng, F. Deng, X. J. Meng, F-S. Xiao, J. Am. Chem. Soc., 2015, 137, 5204.

    24. [24]

      [24] Q. Sun, X. J. Meng, X. L. Liu, X. M. Zhang, Y. Yang, Q. H. Yang, F-S. Xiao, Chem. Commun., 2012, 48, 10505.

    25. [25]

      [25] Y. Huangfu, Q. Sun, S. X. Pan, X. J. Meng, F-S. Xiao, ACS Catal., 2015, 5, 1556.

    26. [26]

      [26] C. Bleschke, J. Schmidt, D. S. Kundu, S. Blechert, A. Thomas, Adv. Synth. Catal., 2011, 353, 3101.

    27. [27]

      [27] J. D. Crowley, S. M. Goldup, N. D. Gowans, D. A. Leigh, V. E. Ronaldson, A. M. Z. Slawin, J. Am. Chem. Soc., 2010, 132, 6243.

    28. [28]

      [28] T. Hamada, X. Ye, S. S. Stahl, J. Am. Chem. Soc., 2008, 130, 833.

    29. [29]

      [29] M. Boltz, A. Blanc, G. Laugel, P. Pale, B. Louis, Chin. J. Catal., 2011, 32, 807.

    30. [30]

      [30] J. L. Hu, Y. L. Gu, Z. H. Guan, J. J. Li, W. L. Mo, T. Li, G. X. Li, ChemSusChem, 2011, 4, 1767.

    31. [31]

      [31] Y. X. Gao, G. Wang, L. Chen, P. X. Xu, Y. F. Zhao, Y. B. Zhou, L. B. Han, J. Am. Chem. Soc., 2009, 131, 7956.

    32. [32]

      [32] Q. Sun, Z. F. Lv, Y. Y. Du, Q. M. Wu, L. Wang, L. F. Zhu, X. J. Meng, W. Z. Chen, F-S. Xiao, Chem. Asian J., 2013, 8, 2822.

    33. [33]

      [33] J. P. Lecomte, A. Kirsch-De Mesmaeker, M. Demeunynck, J. Lhomme, J. Chem. Soc., Faraday Trans., 1993, 89, 3261.

    34. [34]

      [34] W. H. Lin, W. L. Sun, J. Yang, Q. H. Sun, Z. Q. Shen, J. Phys. Chem. C, 2009, 113, 16884.

    35. [35]

      [35] M. B. Majewski, N. R. de Tacconi, F. M. MacDonnell, M. O. Wolf, Inorg. Chem., 2011, 50, 9939.

    36. [36]

      [36] X. Y. Liu, Y. L. Hu, B. Y. Wang, Z. X. Su, Synth. Metals, 2009, 159, 1557.

    37. [37]

      [37] P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. Int. Ed., 2000, 39, 2632

    38. [38]

      [38] A. Elangovan, Y. H. Wang, T. I. Ho, Org. Lett., 2003, 5, 1841.

    39. [39]

      [39] S. Thorand, N. Krause, J. Org. Chem., 1998, 63, 8551.

    40. [40]

      [40] F. J. Liu, L. Wang, Q. Sun, L. F. Zhu, X. J. Meng, F. S. Xiao, J. Am. Chem. Soc., 2012, 134, 16948.

  • 加载中
    1. [1]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    3. [3]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    10. [10]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    11. [11]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    12. [12]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    15. [15]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    16. [16]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    19. [19]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    20. [20]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

Metrics
  • PDF Downloads(0)
  • Abstract views(1051)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return