Citation:
Huanhuan Liu, Aiping Jia, Mengfei Luo, Jiqing Lu. Enhanced CO oxidation over potassium-promoted Pt/Al2O3 catalysts: Kinetic and infrared spectroscopic study[J]. Chinese Journal of Catalysis,
;2015, 36(11): 1976-1986.
doi:
10.1016/S1872-2067(15)60950-0
-
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 kJ/mol for 0.42K-2.0Pt/Al2O3 and 63.6 kJ/mol for 2.0Pt/Al2O3). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.
-
Keywords:
- CO oxidation,
- Potassium,
- Kinetics,
- Pt/Al2O3 catalyst,
- Promoting effect
-
-
-
[1]
[1] Schryer D R, Upchurch B T, Sidney B D, Brown K G, Hoflund G B, Herz R K. J Catal, 1991, 130: 314
-
[2]
[2] Yuan Y Z, Kozlova A P, Asakura K, Wan H L, Tsai K, Iwasawa Y. J Catal, 1997, 170: 191
-
[3]
[3] Haruta M, Kobayashi T, Sano H, Yamada N. Chem Lett, 1987, 16: 405
-
[4]
[4] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B. J Catal, 1993, 144: 175
-
[5]
[5] Santos V P, Carabineiro S A C, Bakker J J W, Soares O S G P, Chen X, Pereira M F R, Orfao J J M, Figueiredo J L, Gascon J, Kapteijn F. J Catal, 2014, 309: 58
-
[6]
[6] Tost A, Widmann D, Behm R J. J Catal, 2009, 266: 299
-
[7]
[7] Maeda Y, Iizuka Y, Kohyama M. J Am Chem Soc, 2013, 135: 906
-
[8]
[8] Fujitani T, Nakamura I. Angew Chem Int Ed, 2011, 50: 10144
-
[9]
[9] Wu Z L, Jiang D E, Mann A K P, Mullins D R, Qiao Z A, Allard L F, Zeng C J, Jin R C, Overbury S H. J Am Chem Soc, 2014, 136: 6111
-
[10]
[10] Schryer D R, Upchurch B T, Van Norman J D, Brown K G, Schryer J. J Catal, 1990, 122: 193
-
[11]
[11] McClure S M, Goodman D W. Chem Phys Lett, 2009, 469: 1
-
[12]
[12] Liu H H, Wang Y, Jia A P, Wang S Y, Luo M F, Lu J Q. Appl Surf Sci, 2014, 314: 725
-
[13]
[13] Xu H, Fu Q, Bao X H. Chin J Catal (徐红, 傅强, 包信和. 催化学报), 2013, 34: 2029
-
[14]
[14] Fernandez-Garcia M, Martinez-Arias A, Salamanca L N, Coronado J M, Anderson J A, Conesa J C, Soria J. J Catal, 1999, 187: 474
-
[15]
[15] Faticanti M, Cioffi N, De Rossi S, Ditaranto N, Porta P, Sabbatini L, Bleve-Zacheo T. Appl Catal B, 2005, 60: 73
-
[16]
[16] Meng L, Jia A P, Lu J Q, Luo L F, Huang W X, Luo M F. J Phys Chem C, 2011, 115: 19789
-
[17]
[17] Liu W, Flytzani-Stephanopoulos M. J Catal, 1995, 153: 317
-
[18]
[18] Martinez-Arias A, Fernandez-Garcia M, Galvez O, Coronado J M, Anderson J A, Conesa J C, Soria J, Munuera G. J Catal, 2000, 195: 207
-
[19]
[19] Luo M F, Ma J M, Lu J Q, Song Y P, Wang Y. J. J Catal, 207, 246: 52
-
[20]
[20] Jia A P, Hu G S, Meng L, Xie Y L, Lu J Q, Luo M F. J Catal, 2012, 289: 199
-
[21]
[21] Sun J F, Zhang L, Ge C Y, Tang C J, Dong L. Chin J Catal (孙敬方, 张雷, 葛成艳, 汤常金, 董林. 催化学报), 2014, 35: 1347
-
[22]
[22] Chen G X, Li Q L, Wei Y C, Fang W P, Yang Y Q. Chin J Catal (陈国星, 李巧灵, 魏育才, 方维平, 杨富泉. 催化学报), 2013, 34: 322
-
[23]
[23] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458: 746
-
[24]
[24] Yu Y B, Zhao J J, Han X, Zhang Y, Qin X B, Wang B Y. Chin J Catal (余立波, 赵娇娇, 韩雪, 张燕, 秦秀波, 王宝义. 催化学报), 2013, 34: 283
-
[25]
[25] Qadir K, Kim S H, Kim S M, Ha H, Park J Y. J Phys Chem C, 2012, 116: 24054
-
[26]
[26] Liu L Q, Zhou F, Wang L G, Qi X J, Shi F, Deng Y Q. J Catal, 2010, 274: 1
-
[27]
[27] Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nature Chem, 2011, 3: 634
-
[28]
[28] Kuriyama M, Tanaka H, Ito S, Kubota T, Miyao T, Naito S, Tomishige K, Kunimori K. J Catal, 2007, 252: 39
-
[29]
[29] Minemura Y, Kuriyama M, Ito S, Tomishige K, Kunimori K. Catal Commun, 2006, 7: 623
-
[30]
[30] Yu X J, Yu W, Li H L, Tu S T, Han Y F. Appl Catal B, 2013, 140-141: 588
-
[31]
[31] Zhu X L, Hoang T, Lobban L L, Mallinson R G. Catal Lett, 2009, 129: 135
-
[32]
[32] Zhai Y P, Pierre D, Si R, Deng W L, Ferrin P, Nilekar A U, Peng G W, Herron J A, Bell D C, Saltsburg H, Mavrikakis M, Flytzani-Stephanopoulos M. Science, 2010, 329: 1633
-
[33]
[33] Pigos J M, Brooks C J, Jacobs G, Davis B H. Appl Catal A, 2007, 319: 47
-
[34]
[34] Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y Q, Asakura K, Flytzani-Stephanopoulos M, He H. Angew Chem Int Ed, 2012, 51: 9628
-
[35]
[35] Wang Y, Liu H H, Wang S Y, Luo M F, Lu J Q. J Catal, 2014, 311: 314
-
[36]
[36] Fogler H S. Elements of Chemical Reaction Engineering. 4th Ed. Pearson Education Inc., 2006: 839
-
[37]
[37] Shacham M, Cutlip M B, Elly M. Polymath, Copyright 2006. http://www.polymath-software.com
-
[38]
[38] García-Dieguez M, Pieta I S, Herrera M C, Larrubia M A, Malpartida I, Alemany L J. Catal Today, 2010, 149: 380
-
[39]
[39] Corro G, Cano C, Fierro J L G. J Mol Catal A, 2010, 315: 35
-
[40]
[40] Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S. J Catal, 2004, 227: 282
-
[41]
[41] Allian A D, Takanabe K, Fujdala K L, Hao X H, Truex T J, Cai J, Buda C, Neurock M, Iglesia E. J Am Chem Soc, 2011, 133: 4498
-
[42]
[42] Gracia F J, Bollmann L, Wolf E E, Miller J T, Kropf A.J. J Catal, 2003, 220: 382
-
[43]
[43] Li N, Chen Q Y, Luo L F, Huang W X, Luo M F, Hu G S, Lu J. Q. Appl Catal B, 2013, 142-143: 523
-
[44]
[44] Bourane A, Bianchi D. J Catal, 2001, 202: 34
-
[45]
[45] Djéga-Mariadassou G, Boudart M. J Catal, 2003, 216: 89
-
[46]
[46] Derrouiche S, Gravejat P, Bassou B, Bianchi D. Appl Surf Sci, 2007, 253: 5894
-
[47]
[47] Chafik T, Dulaurent O, Gass J L, Bianchi D. J Catal, 1998, 179: 503
-
[48]
[48] Alexeev O S, Chin S Y, Engelhard M H, Ortiz-Soto L, Amiridis M D. J Phys Chem B, 2005, 109: 23430
-
[49]
[49] Xu L S, Ma Y S, Zhang Y L, Jiang Z Q, Huang W X. J Am Chem Soc, 2009, 131: 16366
-
[1]
-
-
-
[1]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[2]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[3]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[4]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[5]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[6]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[7]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[8]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027
-
[9]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[10]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[11]
Fan Yang , Zheng Liu , Da Wang , KwunNam Hui , Yelong Zhang , Zhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006
-
[12]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[13]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[14]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[15]
Xudong Lv , Tao Shao , Junyan Liu , Meng Ye , Shengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028
-
[16]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[17]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[18]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[19]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[20]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(714)
- HTML views(91)