Citation: Huanhuan Liu, Aiping Jia, Mengfei Luo, Jiqing Lu. Enhanced CO oxidation over potassium-promoted Pt/Al2O3 catalysts: Kinetic and infrared spectroscopic study[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1976-1986. doi: 10.1016/S1872-2067(15)60950-0 shu

Enhanced CO oxidation over potassium-promoted Pt/Al2O3 catalysts: Kinetic and infrared spectroscopic study

  • Corresponding author: Jiqing Lu, 
  • Received Date: 16 May 2015
    Available Online: 28 June 2015

    Fund Project: 国家自然科学基金(21173195). (21173195)

  • A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 kJ/mol for 0.42K-2.0Pt/Al2O3 and 63.6 kJ/mol for 2.0Pt/Al2O3). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.
  • 加载中
    1. [1]

      [1] Schryer D R, Upchurch B T, Sidney B D, Brown K G, Hoflund G B, Herz R K. J Catal, 1991, 130: 314

    2. [2]

      [2] Yuan Y Z, Kozlova A P, Asakura K, Wan H L, Tsai K, Iwasawa Y. J Catal, 1997, 170: 191

    3. [3]

      [3] Haruta M, Kobayashi T, Sano H, Yamada N. Chem Lett, 1987, 16: 405

    4. [4]

      [4] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B. J Catal, 1993, 144: 175

    5. [5]

      [5] Santos V P, Carabineiro S A C, Bakker J J W, Soares O S G P, Chen X, Pereira M F R, Orfao J J M, Figueiredo J L, Gascon J, Kapteijn F. J Catal, 2014, 309: 58

    6. [6]

      [6] Tost A, Widmann D, Behm R J. J Catal, 2009, 266: 299

    7. [7]

      [7] Maeda Y, Iizuka Y, Kohyama M. J Am Chem Soc, 2013, 135: 906

    8. [8]

      [8] Fujitani T, Nakamura I. Angew Chem Int Ed, 2011, 50: 10144

    9. [9]

      [9] Wu Z L, Jiang D E, Mann A K P, Mullins D R, Qiao Z A, Allard L F, Zeng C J, Jin R C, Overbury S H. J Am Chem Soc, 2014, 136: 6111

    10. [10]

      [10] Schryer D R, Upchurch B T, Van Norman J D, Brown K G, Schryer J. J Catal, 1990, 122: 193

    11. [11]

      [11] McClure S M, Goodman D W. Chem Phys Lett, 2009, 469: 1

    12. [12]

      [12] Liu H H, Wang Y, Jia A P, Wang S Y, Luo M F, Lu J Q. Appl Surf Sci, 2014, 314: 725

    13. [13]

      [13] Xu H, Fu Q, Bao X H. Chin J Catal (徐红, 傅强, 包信和. 催化学报), 2013, 34: 2029

    14. [14]

      [14] Fernandez-Garcia M, Martinez-Arias A, Salamanca L N, Coronado J M, Anderson J A, Conesa J C, Soria J. J Catal, 1999, 187: 474

    15. [15]

      [15] Faticanti M, Cioffi N, De Rossi S, Ditaranto N, Porta P, Sabbatini L, Bleve-Zacheo T. Appl Catal B, 2005, 60: 73

    16. [16]

      [16] Meng L, Jia A P, Lu J Q, Luo L F, Huang W X, Luo M F. J Phys Chem C, 2011, 115: 19789

    17. [17]

      [17] Liu W, Flytzani-Stephanopoulos M. J Catal, 1995, 153: 317

    18. [18]

      [18] Martinez-Arias A, Fernandez-Garcia M, Galvez O, Coronado J M, Anderson J A, Conesa J C, Soria J, Munuera G. J Catal, 2000, 195: 207

    19. [19]

      [19] Luo M F, Ma J M, Lu J Q, Song Y P, Wang Y. J. J Catal, 207, 246: 52

    20. [20]

      [20] Jia A P, Hu G S, Meng L, Xie Y L, Lu J Q, Luo M F. J Catal, 2012, 289: 199

    21. [21]

      [21] Sun J F, Zhang L, Ge C Y, Tang C J, Dong L. Chin J Catal (孙敬方, 张雷, 葛成艳, 汤常金, 董林. 催化学报), 2014, 35: 1347

    22. [22]

      [22] Chen G X, Li Q L, Wei Y C, Fang W P, Yang Y Q. Chin J Catal (陈国星, 李巧灵, 魏育才, 方维平, 杨富泉. 催化学报), 2013, 34: 322

    23. [23]

      [23] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458: 746

    24. [24]

      [24] Yu Y B, Zhao J J, Han X, Zhang Y, Qin X B, Wang B Y. Chin J Catal (余立波, 赵娇娇, 韩雪, 张燕, 秦秀波, 王宝义. 催化学报), 2013, 34: 283

    25. [25]

      [25] Qadir K, Kim S H, Kim S M, Ha H, Park J Y. J Phys Chem C, 2012, 116: 24054

    26. [26]

      [26] Liu L Q, Zhou F, Wang L G, Qi X J, Shi F, Deng Y Q. J Catal, 2010, 274: 1

    27. [27]

      [27] Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nature Chem, 2011, 3: 634

    28. [28]

      [28] Kuriyama M, Tanaka H, Ito S, Kubota T, Miyao T, Naito S, Tomishige K, Kunimori K. J Catal, 2007, 252: 39

    29. [29]

      [29] Minemura Y, Kuriyama M, Ito S, Tomishige K, Kunimori K. Catal Commun, 2006, 7: 623

    30. [30]

      [30] Yu X J, Yu W, Li H L, Tu S T, Han Y F. Appl Catal B, 2013, 140-141: 588

    31. [31]

      [31] Zhu X L, Hoang T, Lobban L L, Mallinson R G. Catal Lett, 2009, 129: 135

    32. [32]

      [32] Zhai Y P, Pierre D, Si R, Deng W L, Ferrin P, Nilekar A U, Peng G W, Herron J A, Bell D C, Saltsburg H, Mavrikakis M, Flytzani-Stephanopoulos M. Science, 2010, 329: 1633

    33. [33]

      [33] Pigos J M, Brooks C J, Jacobs G, Davis B H. Appl Catal A, 2007, 319: 47

    34. [34]

      [34] Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y Q, Asakura K, Flytzani-Stephanopoulos M, He H. Angew Chem Int Ed, 2012, 51: 9628

    35. [35]

      [35] Wang Y, Liu H H, Wang S Y, Luo M F, Lu J Q. J Catal, 2014, 311: 314

    36. [36]

      [36] Fogler H S. Elements of Chemical Reaction Engineering. 4th Ed. Pearson Education Inc., 2006: 839

    37. [37]

      [37] Shacham M, Cutlip M B, Elly M. Polymath, Copyright 2006. http://www.polymath-software.com

    38. [38]

      [38] García-Dieguez M, Pieta I S, Herrera M C, Larrubia M A, Malpartida I, Alemany L J. Catal Today, 2010, 149: 380

    39. [39]

      [39] Corro G, Cano C, Fierro J L G. J Mol Catal A, 2010, 315: 35

    40. [40]

      [40] Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S. J Catal, 2004, 227: 282

    41. [41]

      [41] Allian A D, Takanabe K, Fujdala K L, Hao X H, Truex T J, Cai J, Buda C, Neurock M, Iglesia E. J Am Chem Soc, 2011, 133: 4498

    42. [42]

      [42] Gracia F J, Bollmann L, Wolf E E, Miller J T, Kropf A.J. J Catal, 2003, 220: 382

    43. [43]

      [43] Li N, Chen Q Y, Luo L F, Huang W X, Luo M F, Hu G S, Lu J. Q. Appl Catal B, 2013, 142-143: 523

    44. [44]

      [44] Bourane A, Bianchi D. J Catal, 2001, 202: 34

    45. [45]

      [45] Djéga-Mariadassou G, Boudart M. J Catal, 2003, 216: 89

    46. [46]

      [46] Derrouiche S, Gravejat P, Bassou B, Bianchi D. Appl Surf Sci, 2007, 253: 5894

    47. [47]

      [47] Chafik T, Dulaurent O, Gass J L, Bianchi D. J Catal, 1998, 179: 503

    48. [48]

      [48] Alexeev O S, Chin S Y, Engelhard M H, Ortiz-Soto L, Amiridis M D. J Phys Chem B, 2005, 109: 23430

    49. [49]

      [49] Xu L S, Ma Y S, Zhang Y L, Jiang Z Q, Huang W X. J Am Chem Soc, 2009, 131: 16366

  • 加载中
    1. [1]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    2. [2]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    11. [11]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    12. [12]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    13. [13]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    18. [18]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(802)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return