Citation: Lei Shi, Zhen-Hao Hu, Gao-Ming Deng, Wen-Cui Li. Carbon monoxide oxidation on copper manganese oxides prepared by selective etching with ammonia[J]. Chinese Journal of Catalysis, ;2015, 36(11): 1920-1927. doi: 10.1016/S1872-2067(15)60947-0 shu

Carbon monoxide oxidation on copper manganese oxides prepared by selective etching with ammonia

  • Corresponding author: Wen-Cui Li, 
  • Received Date: 7 May 2015
    Available Online: 7 July 2015

    Fund Project: 国家重点基础研究发展计划(973计划, 2013CB934104) (973计划, 2013CB934104) 中国博士后科学基金(2014M560202). (2014M560202)

  • A series of copper manganese oxides were prepared using a selective etching technique with various amounts of ammonia added during the co-precipitation process. The effect of the ammonia etching on the structure and catalytic properties of the copper manganese oxides was investigated using elemental analysis, nitrogen physisorption, X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction, and O2 temperature-programmed desorption combined with catalytic oxidation of CO. It was found that ammonia can selectively remove copper species from the copper manganese oxides, which correspondingly generates more defects in these oxides. An oxygen spillover from the manganese to the copper species was observed by H2 temperature-programmed desorption, indicating that ammonia etching enhanced the mobility of lattice oxygen species in these oxides. The O2 temperature-programmed desorption measurements further revealed that ammonia etching improved the ability of these oxides to release lattice oxygen. The improvement in redox properties of the copper manganese oxides following ammonia etching was associated with enhanced catalytic performance for CO oxidation.
  • 加载中
    1. [1]

      [1] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J, Delmon B. J Catal, 1993, 144: 175

    2. [2]

      [2] Royer S, Duprez D. ChemCatChem, 2011, 3: 24

    3. [3]

      [3] An A F, Lu A H, Sun Q, Wang J, Li W C. Gold Bull, 2011, 44: 217

    4. [4]

      [4] Zhang R R, Ren L H, Lu A H, Li W C. Catal Commun, 2011, 13: 18

    5. [5]

      [5] Haruta M, Kobayashi T, Sano H, Yamada N. Chem Lett, 1987: 405

    6. [6]

      [6] Santra A K, Goodman D W. Electrochim Acta, 2002, 47: 3595

    7. [7]

      [7] Wang J, Lu A H, Li M R, Zhang W P, Chen Y S, Tian D X, Li W C. ACS Nano, 2013, 7: 4902

    8. [8]

      [8] Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458: 746

    9. [9]

      [9] Frey K, Iablokov V, Sáfrán G, Osán J, Sajo I, Szukiewicz R, Chenakin S, Kruse N. J Catal, 2012, 287: 30

    10. [10]

      [10] Pillai U R, Deevi S. Appl Catal B, 2006, 64: 146

    11. [11]

      [11] Jones C, Taylor S H, Burrows A, Crudace M J, Kiely C J, Hutchings G J. Chem Commun, 2008: 1707

    12. [12]

      [12] Cao J L, Wang Y, Yu X L, Wang S R, Wu S H, Yuan Z Y. Appl Catal B, 2008, 79: 26

    13. [13]

      [13] Chen M S, Goodman D W. Science, 2004, 306: 252

    14. [14]

      [14] Hutchings G J, Mirzaei A A, Joyner R W, Siddiqui M R H, Taylor S H. Appl Catal A, 1998, 166: 143

    15. [15]

      [15] Jones C, Cole K J, Taylor S H, Crudace M J, Hutchings G J. J Mol Catal A, 2009, 305: 121

    16. [16]

      [16] Buciuman F C, Patcas F, Hahn T. Chem Eng Process, 1999, 38: 563

    17. [17]

      [17] Njagi E C, Chen C H, Genuino H, Galindo H, Huang H, Suib S L. Appl Catal B, 2010, 99: 103

    18. [18]

      [18] Kanungo S B. J Catal, 1979, 58: 419

    19. [19]

      [19] Hutchings G J, Mirzaei A A, Joyner R W, Siddiqui M R H, Taylor S H. Catal Lett, 1996, 42: 21

    20. [20]

      [20] Chen H, Tong X L, Li Y D. Appl Catal A, 2009, 370: 59

    21. [21]

      [21] Li D, Yu Q, Li S S, Wan H Q, Liu L J, Qi L, Liu B, Gao F, Dong L, Chen Y. Chem Eur J, 2011, 17: 5668

    22. [22]

      [22] Hasegawa Y, Fukumoto K, Ishima T, Yamamoto H, Sano M, Miyake T. Appl Catal B, 2009, 89: 420

    23. [23]

      [23] Tang Z R, Jones C D, Aldridge J K W, Davies T E, Bartley J K, Carley A F, Taylor S H, Allix M, Dickinson C, Rosseinsky M J, Claridge J B, Xu Z L, Crudace M J, Hutchings G J. ChemCatChem, 2009, 1: 247

    24. [24]

      [24] Morgan K, Cole K J, Goguet A, Hardacre C, Hutchings G J, Maguire N, Shekhtman S O, Taylor S H. J Catal, 2010, 276: 38

    25. [25]

      [25] Cai L N, Guo Y, Lu A H, Branton P, Li W C. J Mol Catal A, 2012, 360: 35

    26. [26]

      [26] Li M, Wang D H, Shi X C, Zhang Z T, Dong T X. Sep Purif Technol, 2007, 57: 147

    27. [27]

      [27] Mirzaei A A, Shaterian H R, Habibi M, Hutchings G J, Taylor S H. Appl Catal A, 2003, 253: 499

    28. [28]

      [28] Cai L N, Hu Z H, Branton P, Li W C. Chin J Catal (蔡丽娜, 胡臻皓, Branton P, 李文翠. 催化学报), 2014, 35: 159

    29. [29]

      [29] Srinivasan K, Subrahmanya R S. J Electroanal Chem Interf Electrochem, 1971, 31: 233

    30. [30]

      [30] Lipkowski J, Galus Z. J Electroanal Chem Interf Electrochem, 1973, 48: 337

    31. [31]

      [31] Cole K J, Carley A F, Crudace M J, Clarke M, Taylor S H, Hutchings G J. Catal Lett, 2010, 138: 143

    32. [32]

      [32] Zhang X B, Ma K Y, Zhang L H, Yong G P, Dai Y, Liu S M. Chin J Chem Phys, 2011, 24: 97

    33. [33]

      [33] Koleva V, Stoilova D, Mehandjiev D. J Solid State Chem, 1997, 133: 416

    34. [34]

      [34] Mirzaei A A, Shaterian H R, Kaykhaii M. Appl Surf Sci, 2005, 239: 246

    35. [35]

      [35] Morales M R, Barbero B P, Cadús L E. Appl Catal B, 2006, 67: 229

    36. [36]

      [36] Waskowska A, Gerward L, Olsen J S, Steenstrup S, Talik E. J Phys: Condens Matter, 2001, 13: 2549

    37. [37]

      [37] Liu Q, Wang L C, Chen M, Liu Y M, Cao Y, He H Y, Fan K N. Catal Lett, 2008, 121: 144

    38. [38]

      [38] Radhakrishnan R, Oyama S T, Chem J G, Asakura K. J Phys Chem B, 2001, 105: 4245

    39. [39]

      [39] Trawczyński J, Bielak B, Miśta W. Appl Catal B, 2005, 55: 277

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    6. [6]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    11. [11]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    15. [15]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    18. [18]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    19. [19]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(0)
  • Abstract views(555)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return