Citation: M. Ravi Chandra, T. Siva Rao, B. Sreedhar. Recyclable Sn-TiO2/polythiophene nanohybrid material for degradation of organic pollutants under visible-light irradiation[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1668-1678. doi: 10.1016/S1872-2067(15)60944-5 shu

Recyclable Sn-TiO2/polythiophene nanohybrid material for degradation of organic pollutants under visible-light irradiation

  • Corresponding author: T. Siva Rao, 
  • Received Date: 23 February 2015
    Available Online: 22 June 2015

  • A Sn-doped TiO2/polythiophene nanohybrid (SPNH) was synthesized by a modified sol-gel process at low temperature. The prepared catalyst was characterized by X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis) diffuse reflectance spectrophotometry (UV-DRS), and Brunauer-Emmett-Teller surface area analysis. The XRD results confirmed that polythiophene (PTh) had no effect on the crystal structure of TiO2. IR spectra and UV-DRS indicated that an interaction occurs between the interface of PTh and metal oxide in SPNH, and doped metal oxide nanoparticles were incorporated into PTh to form a core-shell structure. XPS analysis confirmed the presence of Sn4+ and respective elements of PTh and TiO2 in SPNH. SPNH displayed higher adsorption capacities for pollutants than Sn-doped TiO2 nanoparticles (STN). In addition, SPNH exhibited higher photocatalytic activity and stability than STN towards the degradation of organic pollutants nitrobenzene (NB) and malachite green (MG) under visible-light irradiation. Because of the presence of PTh on STN, there was an increase in the adsorption of NB (24%) and MG (21%) on the surface of SPNH, which led to a higher photocatalytic yield. The recyclability of the photocatalytic activity for the photocatalyst was examined by about five runs and not found any depletion or degradation of PTh under visible light irradiation. The high photocatalytic activity of SPNH makes it an attractive candidate as a photocatalyst for industrial water purification.
  • 加载中
    1. [1]

      [1] Linsebigler A L, Lu G Q, Yates J T. Chem Rev, 1995, 95: 735

    2. [2]

      [2] Lifshitz E, Porteanu H, Glozman A, Weller H, Pflughoefft M, Echymu1ller A. J Phys Chem B, 1999, 103: 6870

    3. [3]

      [3] Zou B S, Volkov V V, Wang Z L. Chem Mater, 1999, 11: 3037

    4. [4]

      [4] O'Regan B, Gratzel M. Nature, 1991, 353: 737

    5. [5]

      [5] Yang H M, Zhang K, Shi R R, Li X W, Dong X D, Yu Y M. J Alloys Compd, 2006, 413: 302

    6. [6]

      [6] Li Y X, Wlodarski W, Galatsis K, Moslih S H, Cole J, Russo S, Rockelmann N. Sens Actuat B, 2002, 83: 160

    7. [7]

      [7] Thompson T L, Yates J T. Chem Rev, 2006, 106: 4428

    8. [8]

      [8] Liang H C, Li X Z. Appl Catal B, 2009, 86: 8

    9. [9]

      [9] Kubacka A, Bachiller-Baeza B, Colon G, Fernandez-Garcia M. Appl Catal B, 2010, 93: 274

    10. [10]

      [10] Hou Y, Li X Y, Zhao Q D, Quan X, Chen G H. Appl Phys Lett, 2009, 95: 093108

    11. [11]

      [11] Sui R H, Young J L, Berlinguette C P. J Mater Chem, 2010, 20: 498

    12. [12]

      [12] Lu S L, Zeng L, Wu T, Ren B F, Niu J F, Liu H Y, Zhao X L, Mao J W. Solar Energy, 2011, 85: 1967

    13. [13]

      [13] Zhu Y F, Xu S B, Jiang L, Pan K L, Dan Y. React Funct Polym, 2008, 68: 1492

    14. [14]

      [14] Song Y Q, Zhang J L, Yang H G, Xu S B, Jiang L, Dan Y. Appl Surf Sci, 2014, 292: 978

    15. [15]

      [15] Xu S B, Jiang L, Yang H G, Song Y Q, Dan Y. Chin J Catal (徐守斌, 江龙, 杨海刚, 宋远卿, 淡宜. 催化学报), 2011, 32: 536

    16. [16]

      [16] Qiao Y, Bao S J, Li C M, Cui X Q, Lu Z S, Guo J. ACS Nano, 2008, 2: 113

    17. [17]

      [17] Wang Y, Jia W Z, Strout T, Ding Y, Lei Y. Sensors, 2009, 9: 6752

    18. [18]

      [18] De Boer B, Facchetti A. Polym Rev, 2008, 48: 423

    19. [19]

      [19] Berlin A, Vercelli B, Zotti G. Polym Rev, 2008, 48: 493

    20. [20]

      [20] Liang H, Li X, Appl Catal B, 2009, 86: 8

    21. [21]

      [21] Wang F, Min S X. Chin Chem Lett, 2007, 18: 1273

    22. [22]

      [22] Wang D S, Wang Y H, Li X Y, Luo Q Z, An J, Yue J X. Catal Commun, 2008, 9: 1162

    23. [23]

      [23] Wen C, Hasegawa K, Kanbara T, Kagaya S, Yamamoto T. J Photochem Photobiol A, 2000, 133: 59

    24. [24]

      [24] Oksuz A U, Mandache S, Oksuz L, Hershkowitz N. Ind Eng Chem Res, 2013, 52: 6610

    25. [25]

      [25] Motaung D E, Malgas G F, Arendse C J, Mavundla S E, Oliphant C J, Knoesen D. Solar Energy Mater Solar Cells, 2009, 93: 1674

    26. [26]

      [26] Chatterjee A, Ebina T, Iwasaki T, Mizukami F. J Chem Phys, 2003, 118: 10212

    27. [27]

      [27] Srivastava S, Sinha R, Roy D. Aquatic Toxicol, 2004, 66: 319

    28. [28]

      [28] Ravi Chandra M, Siva Rao T, Pammi S V N, Sreedhar B. Mater Sci Semicond Process, 2015, 30: 672

    29. [29]

      [29] Wu J C S, Chen C H. J Photochem Photobiol A, 2004, 163: 509

    30. [30]

      [30] Czili H, Horvath A. Appl Catal B, 2008, 81: 295

    31. [31]

      [31] Oksuz A U, Manolache S, Oksuz L, Hershkowitz N. Ind Eng Chem Res, 2013, 52: 6610

    32. [32]

      [32] Gao X D, Chorover J. J Colloid Interf Sci, 2010, 348: 167

    33. [33]

      [33] Li X Z, Li F B, Yang C L, Ge W K. J Photochem Photobiol A, 2001, 141: 209

    34. [34]

      [34] Duan Y D, Fu N Q, Liu Q P, Fang Y Y, Zhou X W, Zhang J B, Lin Y. J Phys Chem C, 2012, 116: 8888

    35. [35]

      [35] Liang H C, Li X Z. Appl Catal B, 2009, 86: 8

    36. [36]

      [36] Zhang S J, Jiang H, Li M J, Yu H Q, Yin H, Li Q R. Environ Sci Technol, 2007, 41: 1977

    37. [37]

      [37] Ju Y M, Yang S G, Ding Y C, Sun C, Zhang A Q, Wang L H. J Phys Chem A, 2008, 112: 11172

    38. [38]

      [38] Liu G, Chen Z G, Dong C L, Zhao Y N, Li F, Lu G Q, Cheng H M. J Phys Chem B, 2006, 110: 20823

    39. [39]

      [39] Salzner U, Lagowski J B, Pickup P G, Poirier R A. Synth Metal, 1998, 96: 177

    40. [40]

      [40] Gao X D, Chorover J. J Colloid Interf Sci, 2010, 348: 167

    41. [41]

      [41] Li W, Bai Y, Liu C, Yang Z H, Feng X, Lu X H, van der Laak N K, Chan K Y. Environ Sci Technol, 2009, 43: 5423

    42. [42]

      [42] Yu C L, Zhou W Q, Yu J C, Liu H, Wei L F. Chin J Catal (余长林, 周晚琴, 余济美, 刘鸿, 魏龙福. 催化学报), 2014, 35: 1609

    43. [43]

      [43] Peng Z, Yu J, Mietek J. Adv Mater, 2014, 26: 4920

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    3. [3]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    11. [11]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    13. [13]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    14. [14]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    20. [20]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

Metrics
  • PDF Downloads(0)
  • Abstract views(401)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return